

Комплекс Messaging

Комплекс PROTEI Messaging Описание функциональных характеристик

Аннотация

Настоящий документ «Комплекс PROTEI Messaging. Описание функциональных характеристик» разработан на программное обеспечение «Комплекс Messaging» разработки ООО «НТЦ ПРОТЕЙ», далее также Messaging, Комплекс Messaging. Настоящий документ предназначен для подачи в Минкомсвязи России вместе с заявлением о внесении сведений о программном обеспечении «Комплекс PROTEI Messaging» в единый реестр российских программ для электронных вычислительных машин и баз данных.

Настоящий документ содержит описание функциональных характеристик программного обеспечения на Комплекс Messaging.

Настоящий документ построен на основании стандартов ООО «НТЦ ПРОТЕЙ».

Содержание

1	Используемые термины и сокращения	5
2	Описание системы	8
	2.1 Apxитектура PROTEI Messaging	
	2.2 Стандарты и спецификации	
3	PROTEI SMSC и USSDS	10
	3.1 Описание модуля PROTEI SMSC и USSDS	10
	3.2 Функциональные возможности PROTEI SMS Center и PROTEI USSD Server	10
	3.3 Процедура передачи коротких сообщений	
	3.4 Сетевая архитектура PROTEI SMSC	12
	3.5 Внутренняя архитектура PROTEI SMSC	13
	3.6 Подсистема хранения и обработки сообщения	14
	3.6.1 Назначение	
	3.6.2 Функциональные возможности	14
	3.6.3 Отчет о доставке для services/SMSC	
	3.6.4 Принципы работы и отложенная доставка	15
4	PROTEI SC_Lite	17
	4.1 Описание модуля	
	4.2 Функциональные возможности	17
	4.3 Внутренняя архитектура PROTEI SC Lite	18
	4.4 Диаграммы обмена данных PROTEI SC_Lite	19
	4.4.1 Процедура обработки исходящих SMS	
	4.4.2 Процедура обмена SMS–сообщениями	
	4.4.3 Процедура MT–SMS с Diameter–тарификацией	
	4.4.4 Процедура MO–SMS с Diameter-тарификацией	
	4.4.5 Процедура MO–USSD Phase 1	
	4.4.6 Процедура MO–USSD Phase 2	
	4.4.7 Процедура MT-USSD Phase 2	
	4.4.8 Процедура HomeRouting c Diameter-тарификацией	
	4.4.9 Процедура HR–SMS на виртуальный номер С Процедура MO–SMS между виртуальными номерами с Diameter–тарификацией.	
_		
5	PROTEI SN	
	5.1 Описание системы	
	5.2 Функциональные возможности	
	5.3 Сетевая и внутренняя архитектура системы	
	5.4 Диаграммы обмена данных PROTEI SN	
	5.4.1 Процедура обработки сценария голосового оповещения	
	5.4.2 Процедура обработка сценария рассылки SMS	30
6	PROTEI SMSFW	38
	6.1 Описание системы	38
	6.2 Функциональные возможности	
	6.3 Основные сценарии при обнаружении или подозрении на мошенничество	
	6.4 Противодействие SMS-спуфингу MO	
	6.5 Противодействие SMS-фейкингу MT	42
	6.5.1 Обнаружение модификации адреса SMSC	
	6.5.2 Обнаружение модификации адреса отправителя	
	6.5.3 Маскирование IMSI и местонахождения абонента	
	6.6 Противодействие SMS-флудингу	
7	PROTEI SMPP Proxy/Router	47
	7.1 Описание системы	47
	7.2 Функциональные характеристики	
	7.3 Сетевая архитектура SMPP Proxy/Router	47
	7.3.1 Подключение SMPP Proxy/Router между SMS-центром и внешними приложениям	ıu 48

Комплекс PROTEI Messaging

	7.	3.2 Подключение SMPP Proxy/Router между SMS-центрами разных операторов	49
	7.4	Тарификация трафика	50
8	P	ROTEI CBC	51
	8.1	Описание системы	51
	8.2	Функциональные возможности	
	8.3	Внутренняя архитектура	52
	8.4	Диаграммы обмена данных	
	8.	4.1 Процедура обслуживания вызова JSON от CBE	
		4.2 Процедура обслуживания вызова XML от ядра оповещения	
9	P	ROTEI IP–SM–GW	54
	9.1	Описание системы	54
	9.2	Функциональные возможности	54
	9.3	Сетевая архитектура	55
	9.4	Внутренняя архитектура	
	9.5	Диаграммы обмена	
	9.	5.1 Процедура регистрации	57
		5.2 Дерегистрация, инициированная пользователем	
	9.	5.3 Дерегистрация, инициированная сетью	59
		5.4 Процедура при успешной обработке сцепленного сообщения SMS MO	
	9.	5.5 Процедура при успешной обработке сцепленного сообщения SMS MT	61
	9.	5.6 Процедура отправки отчета о доставке	
	9.	5.7 Процедура при неуспешной отправке сообщения	
		5.8 Процедура обращения к центру аварийного оповещения	
		5.9 Проиедура оповешения SC при наличии свободного места на UE	

1 Используемые термины и сокращения

В таблице ниже приведены используемые в настоящем документе термины и сокращения.

Таблица 1 — Используемые термины и сокращения

Термин	Описание
3GPP	3rd Generation Partnership Project, Проект партнерства третьего поколения
ASP	Application Service Provider, поставщик услуг доступа к приложениям
BSC	Base Station Controller, контроллер базовых станций
СВС	Cell Broadcast Center, центр вещания по сотам
СВЕ	Cell Broadcast Entity, узел вещания по сотам
CDMA	Code Division Multiple Access, многостанционный доступ с кодовым разделением каналов
СРМ	Central Processor Module, модуль главного процессора
DTMF	Dual-Tone Multi-Frequency, двухтональный многочастотный набор
eNodeB	Evolved Node B, базовая станция сети LTE
ESME	External Short Messaging Entity, внешнее приложение для обмена короткими сообщениями
GMSC	Gateway MSC, шлюз MSC
GSM	Global System for Mobile Communications, глобальный стандарт цифровой мобильной сотовой связи
GT	Global Title, глобальный заголовок
HLR	Home Location Register, регистр местоположения абонентов собственной сети
IMS	IP Multimedia Subsystem, спецификация передачи мультимедийного содержимого на базе IP
IMSI	International Mobile Subscriber Identifier, международный идентификатор абонента мобильной связи
IWMSC	Interworking MSC, межсетевой MSC
LTE	Long-Term Evolution, стандарт беспроводной высокоскоростной передачи связи для мобильных сетей
MAP	Mobile Application Part, протокол мобильных приложений
MME	Mobility Management Entity, узел управления мобильностью

Термин	Описание
MMSC	Multimedia Message Service Center, Центр обработки мультимедийных сообщений
MSC	Mobile Switching Center, коммутационный центр мобильной связи
MSISDN	Mobile Subscriber Integrated Services Digital Number, номер абонента мобильной связи для цифровой сети с интеграцией услуг
ODBC	Open Database Connectivity, программный интерфейс подключения к базам данных
RNC	Radio Network Controller, контроллер радиосети
SCCP	Signaling Connection Control Part, подсистема управления сигнализацией
SGW	Serving Gateway, обслуживающий шлюз
SIGTRAN	Signaling Transport, передача сигнальных сообщений телефонных сигнализаций по IP-сети
SIP	Session Initiation Protocol, протокол инициирования сеансов связи
SMPP	Short Messages Peer-to-Peer Protocol, протокол передачи сообщений одноранговой сети
SMS	Short Message Service, служба коротких сообщений
SMSC	Short Message Service Center, центр обработки коротких сообщений
SS7	Signaling System 7, общий канал сигнализации 7
STP	Signal Transfer Point, магистральный шлюз для маршрутизации трафика
TCAP	Transaction Capabilities Application Part, прикладная подсистема возможностей транзакции
TON	Type of Number, тип нумерации
TSP	Telecom Specific Peripheral, телекоммуникационное специальное периферийное устройство
UDTS	Universal Data Transfer Service, универсальная система передачи данных
USSD	Unstructured Supplementary Service Data, неструктурированные дополнительные служебные данные — технология взаимодействия абонента и приложения через обмен короткими сообщениями
VLR	Visitor Location Register, регистр местоположения абонентов в роуминге в своей сети
GUI	Graphical User Interface, графический пользовательский интерфейс
IVR	Interactive Voice Response, интерактивное голосовое меню

Термин	Описание
JDBC	Java Database Connectivity, соединение с базами данных на Java
SMTP	Simple Mail Transfer Protocol, простой протокол передачи почты

2 Описание системы

2.1 Архитектура PROTEI Messaging

Комплекс PROTEI Messaging имеет модульную архитектуру, состоит из набора взаимодействующих между собой компонент и подсистем. На Рисунке 1 приведены структурные модули и системы Комплекса PROTEI Messaging.

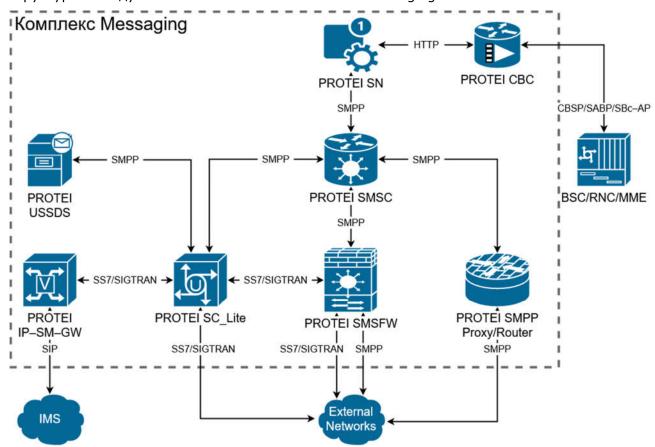


Рисунок 1 — Архитектура Комплекса PROTEI Messaging

В состав Комплекса PROTEI Messaging входят следующие узлы:

- PROTEI SMSC, SMS Center узел приема, хранения, обработки и пересылки сообщений SMS; см. п. 3;
- PROTEI USSD Server узел приема, хранения, обработки и пересылки системных USSD-сообщений; см. п. 3;
- PROTEI SC_Lite шлюз SMSC, принимающий и отправляющий сообщения от сторонних приложений и узлов и обратно; см. п. 4;
- PROTEI SN, Notification System узел конфигурации и управления массовой рассылки оповещений и уведомлений; см. п. 5;
- PROTEI SMSFW, SMS Firewall узел управления маршрутизацией и политиками на основе параметров принятых пакетов; см. п. 6;
- PROTEI SMPP Proxy/Router узел хранения, обработки и пересылки запросов по протоколу SMPP; см. п. 7;
- PROTEI CBC, Cell Broadcast Center узел массового распространения уведомлений и оповещений; см. п. 8;
- PROTEI IP-SM-GW узел преобразования трафика по протоколу SIP в трафик по протоколам SS7/SIGTRAN и обратно; см. п. 9.

• PROTEI MMSC, Multimedia Message Service Center — центр обработки мультимедийных сообщений. Технология MMSC позволяет удаленным пользовательским терминалам обмениваться MMS-сообщениями по сети мобильной связи.

Также на Рисунке указаны внешние элементы сети, непосредственно взаимодействующие с модулями и системами Комплекса:

- BSC/RNC/MME узлы обработки сигнализации и управления передачей данных для управления мобильностью абонентов в сетях 2G/3G/4G;
- External Networks сторонние, внешние сети;
- IMS, IP Multimedia Subsystem сети передачи медиа на основе протокола IP.

2.2 Стандарты и спецификации

Комплекс PROTEI Messaging создан при соблюдении условий и требований следующих документов:

- ETSI GSM 03.38, ETSI GSM 03.40; GSM 29.002;
- CDMA-2000: IS-41;
- FS.11;
- 3GPP TS 23.041, 25.419, 29.078, 48.049;
- ITU-T Q.711, ITU-T Q.712, ITU-T Q.713, ITU-T Q.714, ITU-T Q.715, ITU-T Q.716;
- ITU-T Q.771, ITU-T Q.772, ITU-T Q.773, ITU-T Q.774, ITU-T Q.775;
- ETSI TS 102 900.

3 PROTEI SMSC u USSDS

3.1 Описание модуля PROTEI SMSC и USSDS

Система PROTEI SMSC и USSDS — сервисный центр обработки сообщений SMS, USSD и EMS. Система PROTEI SMSC предназначена для использования в сетях со стандартами GSM, CDMA для предоставления услуг обмена SMS-сообщениями. При работе в сетях GSM система PROTEI SMSC также выполняет функции транзитного/межсетевого SMS-коммутатора мобильной сети GSM, узлов GMSC/IWMSC.

Система PROTEI SMSC и USSDS обеспечивает прием, хранение и доставку коротких сообщений в сетях сотовой подвижной связи.

PROTEI SMS Center и USSD Server могут эффективно применяться следующими участниками сети:

- операторами мобильных сетей для предоставления услуг SMS и EMS;
- операторами мобильных сетей для предоставления услуг взаимодействия с информационно-биллинговой системой, например, рассылка информации о приближении к порогу отключения;
- провайдерами информационно-справочных услуг для предоставления разнообразной информации, подписчиком на которую является абонент. Такой информацией может быть курс основных валют, прогноз погоды, новости и т.д.;
- ASP для рассылки пользователям сотовых сетей сообщений о рекламируемых товарах и услугах.

3.2 Функциональные возможности PROTEI SMS Center и PROTEI USSD Server

Система PROTEI SMS Center и PROTEI USSD Server выполняют следующие функции:

- передача буквенно-цифровых или бинарных сообщений пользователю сети подвижной связи от внешних приложений в формате SMS, EMS;
- прием буквенно-цифровых или бинарных сообщений SMS из мобильной сети и передача их внешнему приложению или пользователю услуги SMS-сети подвижной связи;
- удаление короткого сообщения по его идентификатору с помощью сообщения SMPP_cancel_sm;
- поддержка гибких схем отложенной доставки;
- поддержка процедур MAP-Alert-SC;
- полная совместимость с EMS и Nokia Smart Messaging, Siemens OTA;
- взаимодействие с внешними приложениями по протоколу SMPP;
- разделение нагрузки на основе адресной информации SCCP: Global Title;
- гибкая настройка параметров сигнализации SS7;
- фиксация аварийных ситуаций в журнале аварий;
- настройка IP-адреса, номера порта для входящего SMPP-соединения индивидуально для каждого сервисного приложения;
- настройка прав SMPP-пользователей;
- фиксация результатов приема и отправки коротких сообщений в учетных записях;

- посылка отчетов о доставке мобильным абонентам;
- возможность сохранения учетной и статистической информации во внешних базах данных Заказчика, ODBC;
- управление конфигурацией и контроль функционирования системы
 - О через модем;
 - О через терминал по интерфейсу RS-232;
 - O через сессию telnet по протоколу TCP/IP, SSH;
 - O через подсистему Web-интерфейса.
- поддержка приоритетов коротких сообщений;
- задание черных и белых списков отправителей и получателей;
- возможность задавать белые списки для служб;
- увеличение пропускной способности SMSC созданием дополнительных сигнальных каналов и построением распределенных систем;
- поддержка кодировки текста сообщений UTF-8 и CP-1251;
- поддержка Flash-SMS;
- поддержка отложенной доставки SMS;
- исправление опечаток.

3.3 Процедура передачи коротких сообщений

Услуга передача коротких сообщений содержит в себе две опции:

- базовая услуга по доставке короткого сообщения от SMSC к одной MS, с подтверждением доставки или сообщением об ошибке, в этом случае предусмотрен специальный механизм отложенной доставки;
- базовая услуга по передаче короткого сообщения от MS к SMSC.

На Рисунке 2 приведена процедура передачи SM.

Рисунок 2 — Процедура передачи коротких сообщений

Алгоритм:

- 1. Прием короткого сообщения.
- 2. Регистрация короткого сообщения.
- 3. Отправка короткого сообщения.
- 4. Обработка результата отправки короткого сообщения.

3.4 Сетевая архитектура PROTEI SMSC

Система PROTEI SMSC является SMPP-приложением для SMS-шлюза PROTEI SC_Lite. Таким образом, включение SMSC на сети оператора заключается во включении SMS-шлюза в сеть SS7 и подключении к шлюзу по протоколу IP/TCP/SMPP.

На Рисунке 3 приведена сетевая архитектура PROTEI SMSC и его взаимодействия с другими узлами.

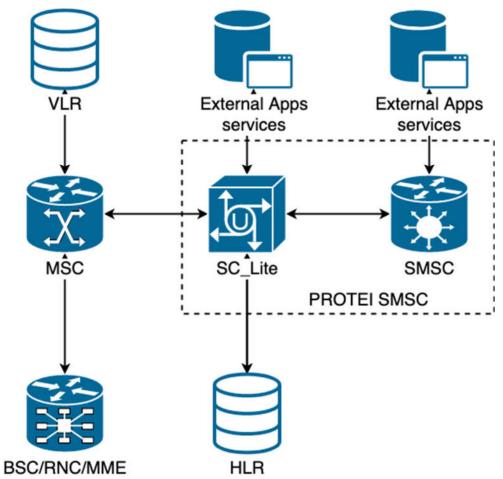


Рисунок 3 — Сетевая архитектура системы PROTEI SMSC

Система PROTEI SMSC включается в сеть SS7, для чего организуется соединение с точкой сигнализации SP или STP. Оптимальной является архитектура с подключением системы PROTEI SMSC к коммутатору MSC.

При работе с внешними приложениями для гарантирования высокой производительности предусмотрена возможность ограничения трафика от External Apps в сеть GSM. Могут ограничиваться скорость/интенсивность передачи.

Система принимает решение о приеме или отбое сообщения согласно ограничениям. Ограничения действуют вне зависимости от загруженности сигнального канала SS7.

В рамках процедуры также предусмотрена защита от переполнения для очереди сообщений при отсутствии исходящего трафика.

3.5 Внутренняя архитектура PROTEI SMSC

На Рисунке 4 приведена внутренняя архитектура PROTEI SMSC с отдельными выделенными модулями и подсистемами.

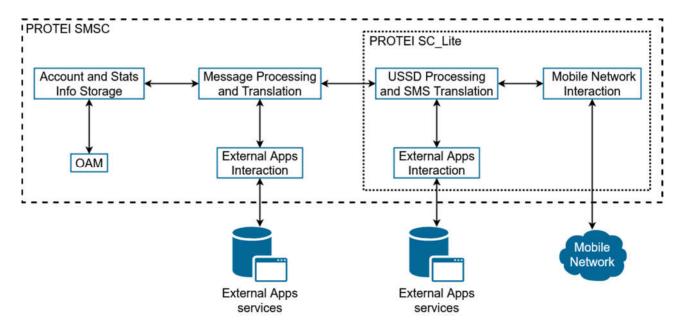


Рисунок 4 — Внутренняя архитектура PROTEI SMSC

PROTEI SMS Center состоит из следующих подсистем и модулей:

- Messaging Processing and Translation, подсистема обработки и хранения сообщений предназначена для фильтрации, определения категории, назначения приоритета, отправки SMS и отчета при необходимости процедуры Alert-SC. Также подсистема организовывает очереди отправляемых сообщений;
- Account and Stats Info Storage, подсистема хранения учетной и статистической информации — предназначена для накопления и хранения учетной и статистической информации по работе системы;
- External Apps Interaction, подсистема взаимодействия с внешними приложениями предназначена для связи с внешними приложениями с помощью различных протоколов. Основным протоколом взаимодействия является SMPP over TCP/IP;
- ОАМ, система технического обслуживания предназначена для администрирования, изменения конфигураций системы;
- SMS-шлюз PROTEI SC_Lite на базе шлюза реализованы следующие подсистемы:
 - O USSD Processing and SMS Translation, подсистема обработки USSDсообщений и трансляции SMS-сообщений — предназначена для выполнения всех функций по обработке и доставке адресату USSDсообщения, а также трансляции SMS-сообщения от других подсистем;

- Mobile Network Interaction, подсистема взаимодействия с мобильной сетью — предназначена для выполнения всех функций по обработке и доставке SMS-/USSD-сообщения от мобильной сети или других подсистем абоненту мобильной сети или другим подсистемам;
- O External Apps Interaction, подсистема взаимодействия с внешними приложениями.

Масштабирование системы PROTEI SMSC осуществляется горизонтально. При исчерпании производительности одной из подсистем в работу вводятся соответствующие дополнительные функциональные модули. Фактически, система имеет сетевую архитектуру, что дополнительно увеличивает ее надежность.

Резервирование центра осуществляется по схеме использования модулей с избыточной общей производительностью в режиме распределения нагрузки. При выходе из строя одного из модулей трафик перераспределяется по функционирующим модулям без прерывания обслуживания. Новый модуль вводится в эксплуатацию также без прерывания обслуживания. Таким образом, в системе PROTEI SMSC нет выделенной единой точки отказа и направления, снижающих максимальную производительность.

3.6 Подсистема хранения и обработки сообщения

3.6.1 Назначение

Подсистема обработки и хранения сообщений предназначена для реализации процедур фильтрации, определения категории, назначения приоритета с помощью отправки короткого сообщения или отчета, при необходимости процедуры MAP-Alert-SC. Также подсистема реализует организацию очередей отправляемых сообщений.

3.6.2 Функциональные возможности

Подсистема хранения и обработки сообщений обеспечивает:

- прием буквенно-цифровых и бинарных сообщений из мобильной сети или от внешних приложений;
- передачу буквенно-цифровых и бинарных сообщений пользователю услуги SMS или внешнему приложению;
- отложенную доставку сообщений;
- взаимодействие с внешними приложениями по протоколу SMPP v3.4;
- гибкие схемы отложенной доставки: по сообщению Alert, по предыдущей ошибке, по временным интервалам.

Дополнительные возможности:

- поддержка технологии EMS, обмен бинарными сообщениями;
- поддержка технологии SMPP replace sm;
- поддержка технологии SMPP_cancel_sm;
- посылка отчета мобильному абоненту по Phase 1 или 2;
- ограничение трафика от внешних приложений по числу одновременно открытых транзакций;
- обработка коротких сообщений с учетом приоритета;

- учет событий и накопление статистики, в том числе по отдельным приложениям;
- отсутствие лицензионных ограничений по полосе и производительности;
- интерфейс к ODBC оператора: черные списки, учет SMS, статистика, etc.

3.6.3 Отчет о доставке для services/SMSC

Внешние службы имеют возможность получать уведомление о доставке сообщения.

Отчет о доставке сообщения, успешный или нет, формируется системой на основании результата запроса SMS-DELIVER-SM и является обычным SM с соответствующим текстом.

Существуют два способа заказа отчета:

- постоянный отчет о доставке отправка отчета на все MO-SMS абонента вне зависимости от настроек мобильного терминала;
- заказ отчета о доставке единичного сообщения производится добавлением в тело SM специального символа на первую позицию.

Уведомление реализуется с помощью опционального поля receipted_message_id сообщения SMPP_deliver_sm. Идентификатор сообщения smpp_id представляет собой уникальную строку.

На Рисунке 5 приведена схема обмена SMPP-сообщениями для отправки SM от узла ESME на PROTEI SMSC.

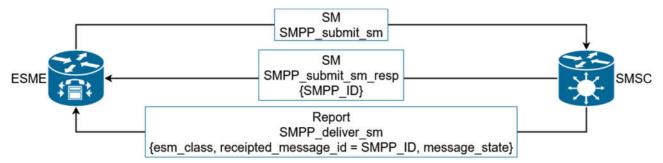


Рисунок 5 — Схема отправки SMS от ESME с простым отчетом о доставке

Система PROTEI SMSC получает уведомление о доставке сообщения внешней службе с помощью сообщения SMPP_submit_sm_resp.

3.6.4 Принципы работы и отложенная доставка

При получении сообщения от абонента мобильной сети система PROTEI SMSC производит процедуру фильтрации. Механизм фильтрации базируется на сравнении адресной информация источника вызова и получателя с таблицами разрешенных значений. Результатом фильтрации является решение о дальнейшей обработке или об отклонении короткого сообщения с уведомлением отправителя о причине отказа.

Далее, с учетом адресации отправителя определяется категория SM и добавление в очередь на передачу с соответствующим приоритетом. Процедура доставки зависит от категории получателя: абонент/внешнее приложение, и протокола SMSC и получателем.

Если сообщение по какой-либо причине не может быть доставлено в настоящий момент, то используется механизм отложенной доставки. Также поддерживаются отчеты о доставке для оповещения отправителя об успешном или неуспешном завершении передачи SMS.

Описание функциональных характеристик

Комплекс PROTEI Messaging

При подключении внешних приложений непосредственно к PROTEI SC_Lite функции отложенной доставки распределяются на внешние приложения.

Функция отложенной доставки сообщения используется в случае неудачной попытки доставки короткого сообщения.

Для обеспечения возможности отложенной доставки отправляемые от SMSC сообщения содержат специальный флаг, сигнализирующий о заказе уведомления Alert-SC при появлении абонента в сети. В случае неуспешной доставки сообщения SC_Lite информирует отправителя о причине. В качестве отправителя выступает подсистема хранения и обработки сообщений. После оповещения сообщение ставится в очередь.

Повторные попытки отправки сообщения предпринимаются по факту получения сообщений MAP-Alert-SC. Однако SMSC сам попытается доставить сообщение в соответствии с установленной схемой. Попытки доставки продолжаются до успешной отправки или истечения времени жизни сообщения.

Следующее время, по истечение которого будет произведена повторная отправка неудачно отправленного сообщения, выставляется согласно схеме доставки и коду ошибки при предыдущей попытке доставки.

4 PROTEI SC_Lite

4.1 Описание модуля

PROTEI SC_Lite представляет собой шлюз для трансляции коротких сообщений SMS/EMS и сообщений USSD.

Система предназначена для использования в сетях стандартов GSM/CDMA для предоставления услуг обмена короткими сообщениями, а также в сетях GSM для обмена сообщениями USSD. При работе в GSM-сетях PROTEI SC_Lite выполняет функции транзитного/межсетевого коммутатора GMSC/IWMSC мобильной сети GSM в части отправки/приема SM от коммутатора сети GSM/MSC зоны местонахождения абонента.

PROTEI SC_Lite обеспечивает интерфейс между сетью мобильной связи и внешними приложениями для приема и отправки SMS-/USSD-сообщений.

Пользователями могут выступать любые внешние приложения, предоставляющие абонентам справочно-информационные услуги. При организации взаимодействия SC_Lite с информационно-биллинговой системой оператор сможет реализовать целый ряд услуг по предоставлению данных о состоянии счета или приближении к порогу отключения.

В качестве пользователей внешних приложений PROTEI SC_Lite могут выступать провайдеры информационно-справочных услуг, предоставляя информацию абонентам с подпиской. Такой информацией может быть курс валют, прогноз погоды, новости и т.д.

В настоящее время широкое распространение получают ASP, будучи пользователями SC_Lite, могут, например, эффективно проводить рекламные компании рассылкой сообщений о рекламируемых товарах и услугах абонентам сотовых сетей.

PROTEI SC_Lite является многопоточной и осуществляет взаимосвязь с мобильной сетью по технологии SIGTRAN. Использование SIGTRAN позволяет переносить сообщения по IP-сети. Многопоточная версия позволяет задействовать несколько процессоров.

4.2 Функциональные возможности

Система PROTEI SC Lite выполняет следующие функции:

- передача буквенно-цифровых или бинарных сообщений пользователю сети от внешних приложений в формате SMS или USSD;
- прием буквенно-цифровых или бинарных сообщений SMS при отправке на этот SMSC, а не на основной, и передача внешнему приложению;
- прием буквенно-цифровых USSD-сообщений, передача внешнему приложению;
- поддержка технологий EMS, Nokia Smart Messaging и OTA;
- взаимодействие с несколькими внешними приложениями по протоколу SMPP;
- анализ номеров USSD-сервисов для маршрутизации сообщения к требуемому внешнему приложению;
- поддержка протоколов SIGTRAN/M2PA;
- настройка таблиц соответствия номеров USSD-сервисов и адресов внешних приложений;
- управление конфигурацией и контроль функционирования системы:
 - О через модем;
 - О через терминал, подключенный через интерфейс RS-232;
 - О через сессию Telnet по протоколу TCP/IP.

- фиксирование аварийных ситуаций в журнале аварий;
- настройка IP-адреса, номера порта для входящего SMPP-соединения отдельно для каждого сервисного приложения;
- настройка прав SMPP для пользователей;
- фиксирование результатов приема и отправки SM в учетных файлах;
- отправка запросов в биллинг-центр через BRT-интерфейс при регистрации SM для online-тарификации;
- отправка запросов BRT, исходя из наличия/отсутствия номера MSC в черных/белых списках;
- преобразование временных зон, исходя из местоположения MSC отправителя.

4.3 Внутренняя архитектура PROTEI SC_Lite

На Рисунке 6 приведена внутренняя архитектура модуля PROTEI SC_Lite с отдельными выделенными модулями и подсистемами.

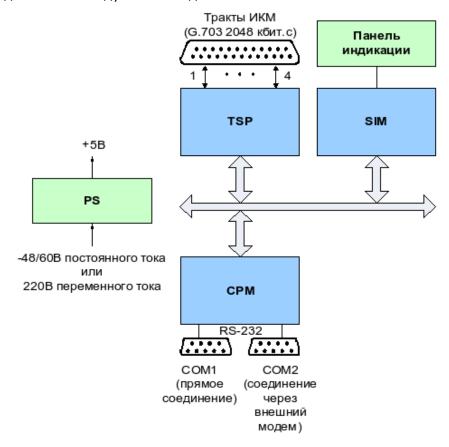


Рисунок 6 — Внутренняя архитектура PROTEI SC_Lite

PROTEI SC Lite состоит из следующих подсистем и модулей:

- CPM, Central Processor Module модуль центрального процессора;
- TSP, Telecom Specific Peripheral телекоммуникационное специальное периферийное устройство;
- SIM модуль для управления работой центрального процессора.

Модули конструктивно выполнены в виде стандартных плат половинного размера конструктива ISA, объединенных кросс-платой. Вместе с источником питания PS и панелью индикации модули устанавливаются в общем корпусе.

4.4 Диаграммы обмена данных PROTEI SC_Lite

4.4.1 Процедура обработки исходящих SMS

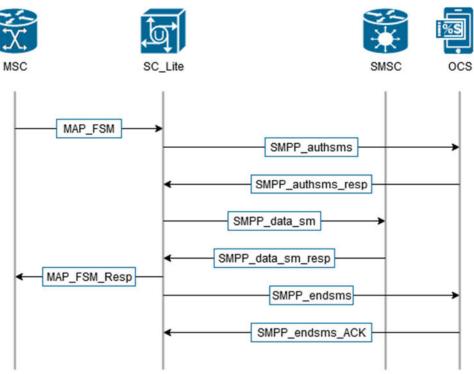


Рисунок 7 — Сценарий обработки входящих SMS

- 1. Абонент отправляет SMS-сообщение, которое поступает на коммутатор MSC.
- 2. MSC инициирует соединение с узлом SC_Lite и пересылает сообщение.
- 3. Проверяется необходимость обращения к BRT.
- 4. SC Lite отправляет запрос на предоставление услуги абоненту на узел BRT.
- Если на счете достаточно средств для предоставления услуги, BRT отвечает разрешением на предоставление услуги.
- В ином случае BRT запрещает предоставление услуги, сессия разрывается.
- 5. При получении разрешения от BRT узел SC_Lite отправляет сообщение в SMSC в режиме Store and Forward.
- 6. В случае успешной регистрации SMSC отправляет на SC_Lite подтверждение с идентификатором SMS.
- 7. SC_Lite отправляет SMS, результат посылки отправляется в BRT.
- 8. SC_Lite завершает соединение с BRT и MSC.

4.4.2 Процедура обмена SMS-сообщениями

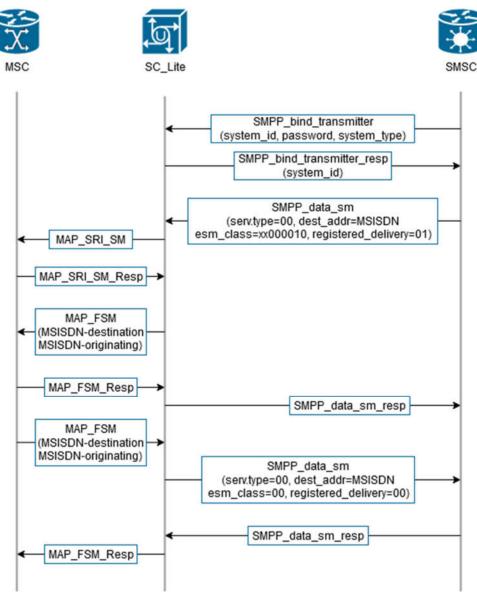


Рисунок 8 — Процедура обмена SMS-сообщениями

Возможны два различных сценария:

- от внешнего приложения в мобильную сеть:
- 1. Внешнее приложение отправляет запрос к SC_Lite на установление сеанса.
- 2. При успешном запросе SC_Lite отправляет на узел SMSC подтверждение.
- 3. ESME передает запрос SMPP_data_sm на SC_Lite в режиме Store and Forward.
- 4. SC_Lite отправляет сообщение MAP-SRI-SM на узел HLR для выяснения местоположения абонента.
- 5. В ответ от MSC на узел SC Lite приходит сообщение MAP-SRI-SM Resp.
- 6. SC_Lite отправляет на узел MSC запрос MAP-FSM с телом сообщения.
- 7. При успехе MSC отправляет подтверждение на SC_Lite.
- 8. SC_Lite отправляет внешнему приложению подтверждение SMPP_data_sm_resp.

- из мобильной сети ко внешнему приложению:
- 1. Абонент отправляет SMS-сообщение, которое поступает на коммутатор MSC.
- 2. MSC инициирует соединение с SC_Lite и отправляет запрос MAP-FSM, содержащий тело сообщения.
- 3. SC_Lite передает SMS-сообщение на внешнее приложение SMSC в режиме Store and Forward.
- 4. При успехе SMSC отправляет на SC_Lite подтверждение SMPP_data_sm_resp.
- 5. SC_Lite отправляет на MSC подтверждение MAP-FSM_Resp.

4.4.3 Процедура MT-SMS с Diameter-тарификацией

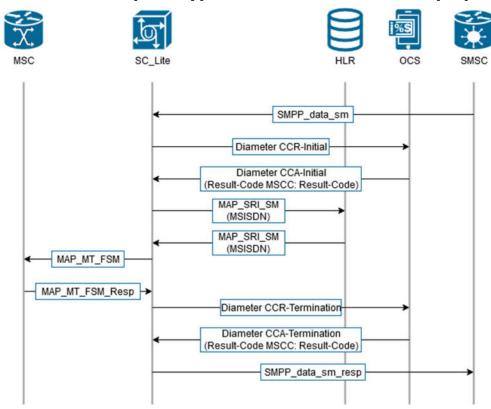


Рисунок 9 — Процедура MT-SMS с Diameter-тарификацией

- 1. SMSC инициирует доставку SMS абоненту, отправляя SMPP_data_sm на SC_Lite.
- 2. SC_Lite отправляет на узел OCS запрос Diameter CCR-Initial на резервирование средств для отправки SMS.
- 3. Если средств на счете недостаточно или получен запрет на предоставление услуги данному абоненту, SC_Lite отправляет ошибку узлу SMSC.
- 4. При успешном ответе Diameter CCA-Initial от OCS узел SC_Lite отправляет на узел HLR запрос MAP-SRI-SM о местоположении получателя сообщения.
- 5. HLR в ответ отправляет на узел SC_Lite параметры IMSI и местоположения.
- 6. SC_Lite доставляет сообщение на узел MSC сообщением MAP-MT-FSM.
- 7. При успехе SC_Lite отправляет на OCS сообщение Diameter CCR-Termination.
- 8. При успешной доставке SC_Lite отправляет ответ на узел SMSC.

4.4.4 Процедура MO-SMS с Diameter-тарификацией

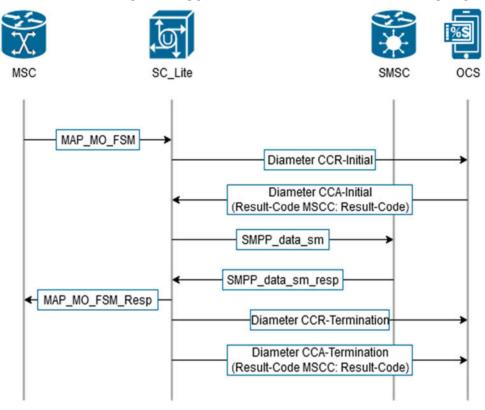


Рисунок 10 — Процедура MO-SMS с Diameter-тарификацией

- 1. Абонент отправляет SMS-сообщение, которое поступает на коммутатор MSC.
- 2. MSC инициирует соединение с SC_Lite и пересылает сообщение.
- 3. SC_Lite отправляет на OCS запрос Diameter CCR-Initial на резервирование средств для отправки SMS.
- 4. Если на счете достаточно средств, OCS отправляет разрешение на предоставление услуги в ответе Diameter CCA-Initial.
- 5. Если средств на счете недостаточно, OCS запрещает предоставление услуги данному абоненту, и сессия разрывается.
- 6. При положительном ответе от OCS узел SC_Lite отправляет сообщение в SMSC в режиме Store and Forward.
- 7. В случае успешной регистрации SMSC отправляет на SC_Lite подтверждение SMPP_deliver_sm_resp с идентификатором SMS.
- 8. SC_Lite отправляет SMS, результат посылки отправляется в OCS.
- 9. SC_Lite завершает соединение с OCS и MSC.

4.4.5 Процедура MO-USSD Phase 1

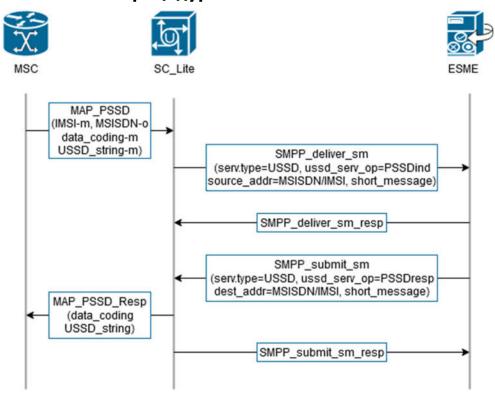


Рисунок 11 - Процедура приема MO-USSD, Phase 1

PROTEI Messaging выполняет роль USSD-шлюза. Сессия инициируется абонентом. Алгоритм:

- 1. Абонент отправляет сообщение, которое поступает на коммутатор MSC.
- 2. MSC инициирует соединение с SC_Lite и отправляет запрос MAP-PSSD с идентификатором абонента, номером мобильной станции и USSD-строкой ввода пользователя.
- 3. SC_Lite передает сообщение на внешнее приложение.
- 4. При успешном приеме ESME отправляет на SC_Lite подтверждение SMPP_deliver_sm_resp.
- 5. Внешнее приложение отправляет ответ на SC_Lite в режиме Store and Forward.
- 6. SC Lite отправляет подтверждение MAP-PSSD Resp с USSD-строкой в сеть.
- 7. При успешной передаче SC_Lite отправляет на ESME подтверждение SMPP_submit_sm_resp.

4.4.6 Процедура MO-USSD Phase 2

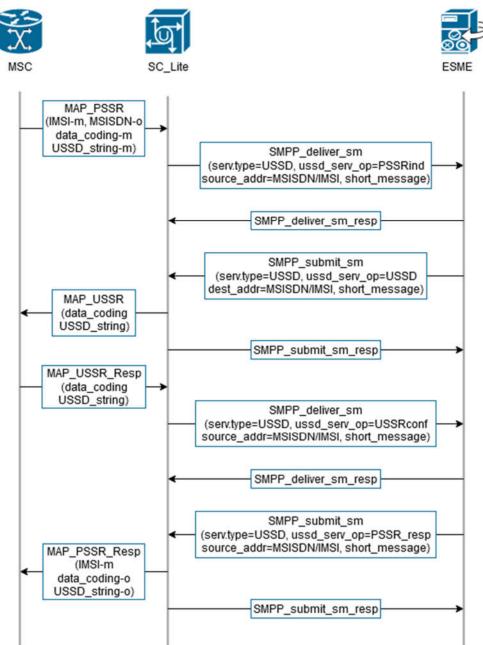


Рисунок 12 — Процедура приема MO-USSD, Phase 2

PROTEI Messaging выполняет роль USSD-шлюза. Сессия инициируется абонентом. Алгоритм:

- 1. Абонент отправляет сообщение, которое поступает на коммутатор MSC.
- 2. MSC инициирует соединение с SC_Lite и отправляет запрос MAP-PSSR с идентификатором абонента, номером мобильной станции и USSD-строкой ввода пользователя.
- 3. SC_Lite передает сообщение SMPP_deliver_sm на внешнее приложение ESME.
- 4. При успешном приеме сообщения ESME отправляет на SC_Lite подтверждение SMPP_deliver_sm_resp и сообщение SMPP_submit_sm с продолжением диалога в режиме Store and Forward.
- 5. SC Lite отправляет в мобильную сеть запрос MAP-USSR с USSD-строкой.

- 6. SC_Lite отправляет на ESME подтверждение SMPP_submit_sm_resp.
- 7. MSC отправляет в ответ подтверждение MAP-USSR_Resp с новым вводом пользователя.
- 8. SC_Lite отправляет на внешнее приложение сообщение SMPP_deliver_sm с вводом пользователя.
- 9. В случае успешного приема сообщения ESME отправляет на SC_Lite подтверждение SMPP_deliver_sm_resp и сообщение SMPP_submit_sm в режиме Store and Forward.
- 10. SC_Lite отправляет на MSC подтверждение MAP-PSSR_Resp с идентификатором абонента и USSD-строкой.
- 11. SC_Lite отправляет на ESME подтверждение SMPP_submit_sm_resp.

4.4.7 Процедура MT-USSD Phase 2

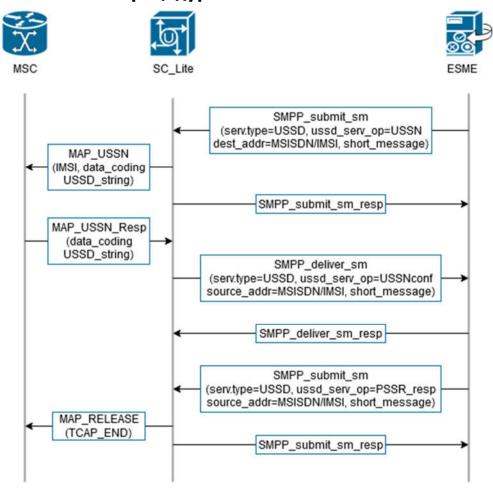


Рисунок 13 — Процедура обмена MT-USSD, Phase 2

Сессия инициируется сервисным приложением.

- 1. Внешнее приложение передает на SC_Lite сообщение SMPP_submit_sm с телом сообщения в режиме Store and Forward.
- 2. SC_Lite отправляет запрос MAP-USSN с идентификатором абонента и USSDстрокой на коммутатор MSC.
- 3. SC_Lite отправляет на ESME подтверждение SMPP_submit_sm_resp.
- 4. MSC отправляет на SC_Lite подтверждение MAP-USSN_Resp с USSD-строкой.
- 5. SC_Lite передает на внешнее приложение cooбщение SMPP_deliver_sm c ответом абонента.
- 6. При успешном приеме сообщения ESME отправляет на SC_Lite подтверждение SMPP_deliver_sm_resp.
- 7. Внешнее приложение передает на SC_Lite сообщение SMPP_submit_sm с признаком окончания пользовательского диалога.
- 8. SC_Lite разрывает связь с MSC сообщением TCAP_RELEASE.
- 9. SC_Lite отправляет подтверждение SMPP_submit_sm_resp на ESME.

4.4.8 Процедура HomeRouting c Diameterтарификацией

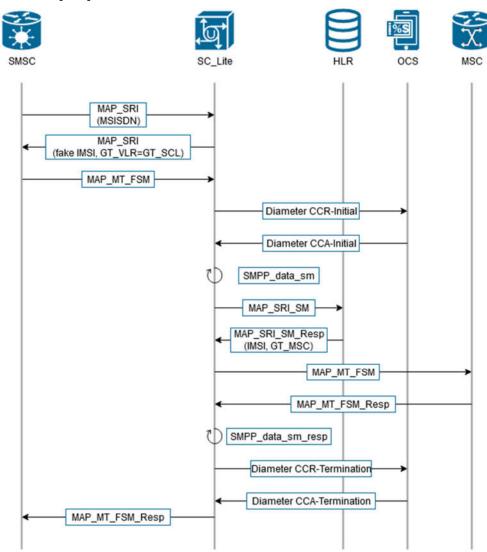


Рисунок 14 — Процедура HomeRouting c Diameter-тарификацией

- 1. Внешний SMSC отправляет на SC_Lite запрос MAP-SRI о местоположении получателя сообщения.
- 2. SC_Lite отправляет в ответ fake IMSI абонента и свой GT вместо GT VLR.
- 3. С внешнего SMSC на SC_Lite поступает сообщение MAP-MT-FSM.
- 4. SC_Lite отправляет на OCS запрос Diameter CCR-Initial на резервирование средств для отправки SMS.
- 5. Если средств недостаточно или получен запрет на предоставление услуги данному абоненту, SC Lite отправляет ошибку в сторону внешнего SMSC.
- 6. При успешном ответе Diameter CCA-Initial от OCS узел SC_Lite доставляет сообщение абоненту.
- 7. При успешной доставке SMS-сообщения SC_Lite отправляет на OCS запрос Diameter CCR-Termination о списании зарезервированных средств.
- 8. SC_Lite отправляет на внешний SMSC сообщение MAP-MT-FSM о доставке сообщения.

4.4.9 Процедура HR-SMS на виртуальный номер

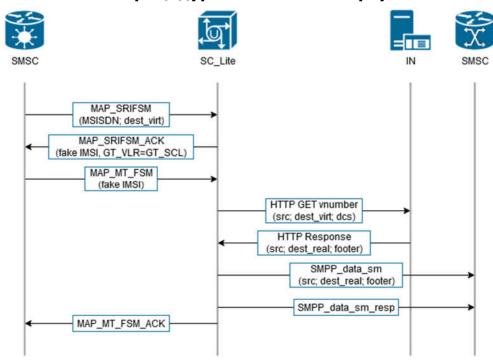


Рисунок 15 — Процедура доставки HR-SMS на виртуальный номер

- 1. Внешний SMSC отправляет на SC_Lite запрос MAP-SRI-FSM о местоположении получателя сообщения.
- 2. SC_Lite отправляет в ответ fake IMSI абонента и свой GT вместо GT VLR.
- 3. С внешнего SMSC на SC_Lite поступает сообщение MAP-MT-FSM.
- 4. SC_Lite отправляет в сеть IN запрос HTTP на получение footers при текущей кодировке DCS.
- 5. При корректных значениях параметров IN возвращает ответ с указанием footers.
- 6. При успешном ответе на HTTP-запрос от IN узел SC_Lite доставляет сообщение на внутренний SMSC.
- 7. Внутренний SMSC подтверждает получение сообщения с помощью SMPP_data_sm_resp.
- 8. SC_Lite отправляет на внешний SMSC сообщение MAP-MT-FSM_ACK о доставке сообщения.

4.4.10 Процедура MO-SMS между виртуальными номерами с Diameter-тарификацией

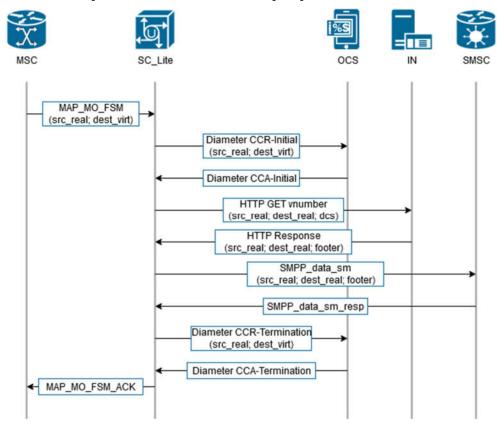


Рисунок 16 — Процедура отправки MO-SMS с виртуального номера на виртуальный Алгоритм:

- 1. Абонент отправляет SMS-сообщение, которое поступает на коммутатор MSC.
- 2. MSC инициирует соединение с SC_Lite и пересылает сообщение.
- 3. SC_Lite отправляет на OCS запрос Diameter CCR-Initial на резервирование средств для отправки SMS.
- 4. Если средств недостаточно или получен запрет на предоставление услуги данному абоненту, SC Lite отправляет ошибку в сторону внешнего SMSC.
- 5. SC_Lite отправляет в сеть IN запрос HTTP на получение footers при текущей кодировке DCS.
- 6. При корректных значениях параметров IN возвращает ответ с указанием footers.
- 7. При успешном ответе на HTTP-запрос от IN узел SC_Lite доставляет сообщение на внутренний SMSC.
- 8. Внутренний SMSC подтверждает получение сообщения с помощью SMPP_data_sm_resp.
- 9. При успешной доставке SMS-сообщения SC_Lite отправляет на OCS запрос Diameter CCR-Termination о списании зарезервированных средств.
- 10. SC_Lite отправляет на внешний SMSC сообщение MAP-MT-FSM_ACK о доставке сообщения.

5 PROTEI SN

5.1 Описание системы

Система PROTEI SN — программный комплекс, предназначенный для оповещения заданного списка абонентов и проигрывания голосовых сообщений.

5.2 Функциональные возможности

Система PROTEI SN выполняет следующие функции:

- поддержка различных способов оповещения абонентов:
 - О голосовые вызовы;
 - О факсимильные сообщения;
 - O SMS-сообщения;
 - O email.
- оповещение заданного списком абонентов в автономном режиме по расписанию;
- поддержка виртуальности;
- предоставление сервера и каналов сторонним организациям для эксплуатации
- задание параметров:
 - О для голосовых вызовов:
 - требуемая длительность вызова после ответа абонента;
 - набор подсказок, проигрываемый после дозвона до абонента;
 - DTMF-код, который необходимо набрать;
 - максимальное время дозвона до абонента;
 - номер вызывающего абонента.
 - O Email/SMS:
 - текст сообщения;
 - от какого адреса отправлять сообщения.

Каждый виртуальный заказчик и его списки имеют следующие ограничения:

- максимальное количество одновременных транзакций, кроме email;
- максимальный диапазон рассылки: количество вызовов/сообщений в секунду;
- вес, определяющий распределение общих ресурсов: голосовые каналы, SMSнаправления, между заказчиками и списками при одновременном использовании.

Могут проигрываться следующие сообщения:

- сообщения автоинформатора. Сообщение настраивается администратором системы в Web-интерфейсе, может состоять из записанных аудиофайлов в формате MP3, WAV или данных, полученных от внешних источников. Поддерживаются типы данных: баланс, дата/месяц/время, единицы, числа, телефонные номера, длительность;
- сообщения речевого меню. Может работать совместно с IVR, Interactive Voice Response, переход абонента на меню после успешного вызова настраивается в Web-интерфейсе, проигрываемое сообщение настраивается в IVR.

При работе с PROTEI SN доступен графический Web-интерфейс, реализующий следующие возможности:

- авторизация пользователей в системе с разграничением по правам доступа;
- ведение статистики по вызовам:
- графическое отображение количества оповещённых/не оповещённых абонентов в режиме реального времени;
- ведение журнала вызовов с отображением результатов оповещения;
- выгрузка отчёта совершенных вызовов, оповещения абонентов, списка оповещения;
- ведение журнала по работе с Web-интерфейсом.

5.3 Сетевая и внутренняя архитектура системы

На Рисунке 17 приведена внутренняя архитектура Системы PROTEI SN с отдельными выделенными модулями, а также ее взаимодействия с другими узлами.

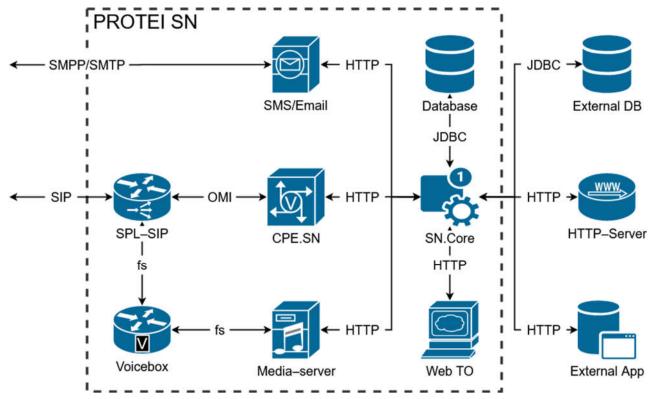


Рисунок 17 — Архитектура системы PROTEI SN

Комплекс Messaging состоит из следующих подсистем:

- Модуль Database база данных системы. Обеспечивает хранение всех данных: информация о заказчиках, списках оповещения, абонентах оповещения и других.
- Модуль Core ядро системы. Реализовано на языке Java. Имеет следующие функции:
 - O создание и выдачу задач оповещения для CPE и SN.Sender;
 - О взаимодействие с внутренней базой данных конфигурации и журналов;
 - О аутентификация и авторизация пользователей по Web/API;

- O взаимодействие по протоколу HTTP с CPE и Web;
- О ведение журналов аудита;
- О доступ к сервисам, к которым могут обращаться внешние приложения HTTP/XML API;
- О реализация алгоритмов распределения ресурсов системы между разными заказчиками и списками оповещения;
- О отправка запросов к внешним источникам данных: на http-сервер, внешнюю базу данных или внешнее приложения для получения переменных, необходимых для сценария оповещения. В качестве переменных могут быть значения баланса абонента, даты, тарифы и другая информация.
- Web модуль Web GUI. Обеспечивает загрузку/выгрузку данных посредством вызова соответствующих сервисов ядра. Имеет следующие функции:
 - О работа с аккаунтами;
 - О работа с заказчиками;
 - О работа со списками и абонентами;
 - О работа с отчетами и статистикой.
- SMS/E-mail модуль оповещения посредством SMS-/email-рассылок. Реализован на языке Java. Имеет следующие функции:
 - О с определенной частотой собирает с ядра данные о необходимых оповещениях, передавая свои ограничения: текущее количество транзакций, максимальная скорость рассылки и др.;
 - О уведомление о результатах оповещения: причина завершения и др.;
 - О при SMS-оповещении взаимодействует с SMSC по протоколу SMPP.

Факт оповещения определяется наличием сообщения SMPP_submit_sm_resp от SMSC или SMPP_deliver_sm, если задано ожидание отчета о доставке.

- CPE.SN модуль оповещения посредством голосовых вызовов на базе платформы CPE. Имеет следующие функции:
 - О с определенной частотой собирает с ядра данные о необходимых оповещениях передавая свои ограничения: текущее количество транзакций, максимальная скорость рассылки и др.;
 - О уведомление о результатах оповещения: причина завершения и др.;

Модуль голосового оповещения работает по следующему сценарию:

- 1. Отправление вызова абоненту.
- 2. Ожидание принятия вызова.
- 3. Проигрывание аудиофайлов с возможной настройкой DTMF-кодов.
- 4. Фиксирование оповещения либо по времени прослушивания аудиофайла абонентом, либо по введенному абонентом DTMF-коду.

Примечание. Результат оповещения может передаваться сервисом IVR.

- SPL-SIP модуль коммутации. Имеет следующие функции:
 - О обработка команд СРЕ на дозвон абонентам и проигрывание аудиофайлов по правилам сценария оповещения;
 - О проигрывание аудиофайлов в соответствии с правилами сценария оповещения;
 - О прием DTMF в соответствии с правилами сценария оповещения.
- Media-server узел обработки медиафайлов. Имеет следующие функции:
 - О конвертация загружаемых медиафайлов в пригодный для проигрывания кодеками G.711/G.729 формат;
 - О синхронизация файлов между файловыми системами.

Алгоритм:

- 1. Получение файла от SN.Core.
- 2. Конвертация файла из MP3/WAV в G.711/G.729.
- 3. Сохранение обработанного файла в локальной файловой системе.
- 4. Отправка созданного файла на другие медиасерверы для сохранения в удаленной файловой системе.
- Voicebox узел хранение аудиофайлов. Реализован в виде файловой системы.

Примечание. Voicebox должен находиться на одном сервере с узлами SPL-SIP и Media-server.

Узел взаимодействует с внешними приложениями и http-сервером по протоколу HTTP и внешней базой данных, не являющейся частью системы, по протоколу jdbc.

5.4 Диаграммы обмена данных PROTEI SN

5.4.1 Процедура обработки сценария голосового оповещения

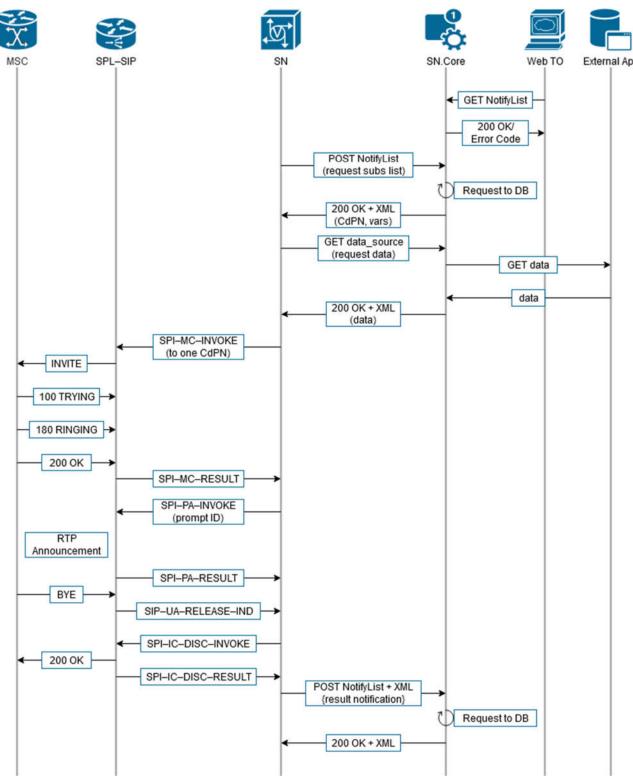


Рисунок 18 — Диаграмма обработки сценариев голосовых сообщений

Алгоритм:

- 1. Пользователь авторизуется в системе через Web-интерфейс.
- 2. Пользователь выбирает список оповещения. Web отправляет запрос ядру SN.Core на получение списка оповещения:

notify list?method=get

3. Администратор активирует список оповещения. На ядро SN.Core передается запрос:

notify list?method=start

- 4. Ядро проверяет параметры списка.
- если проверка пройдена, статус списка меняется на "Активен". SN.Core отвечает Web сообщением 200 ОК.
- если проверка не пройдена, SN.Core отвечает 200 ОК с описанием ошибки в теле ответа http/xml.
- если проверка не пройдена по каким-либо причинам: нет подключения к базе данных, не найден список оповещения, etc. отправляется ответ, отличный от 200 ОК.
- 5. CPE.SN периодически отправляет запрос на модуль SN.Core с целью уточнить список абонентов для оповещения с типом Voice, передавая текущие ограничения по одновременному количеству вызовов и результаты текущих рассылок.
- 6. SN.Core проверяет ограничения списка по количеству абонентов и ограничения CPE.SN.
- 7. На SN.Core формируется перечень номеров и передается в теле ответного сообщения 200 ОК на модуль CPE.SN.
- 8. После получения номеров CPE.SN передает модулю SPL-SIP команду на отправку вызова по каждому номеру, SPI_MC_INVOKE. Количество SPI_MC_INVOKE не превышает максимального количества одновременных вызовов.
- 9. SPL-SIP инициирует вызовы и передает результаты отправки вызова узлу CPE.SN в сообщении SPI MC RESULT.
- если получен ответ от абонента:
 - O CPE.SN передает SPL-SIP команду проигрывания файла. В параметрах команды передается идентификатор файла, хранящегося в модуле Voicebox.
 - O SPL-SIP ищет файл по полученному идентификатору и проигрывает его в случае обнаружения.
 - O SPL-SIP передает результат проигрывания файла модулю CPE.SN в сообщении SPI_PA_RESULT.
- при получении отбоя от абонента SPL-SIP передает модулю CPE.SN сообщение SIP_UA_RELEASE_IND, обозначающее отбой вызова.
- 10. СРЕ передает модулю SPL-SIP команду завершения вызова и передачи результатов: длительности вызова, разговорной фазы, причины разъединения.
- 11. SPL прекращает вызов и передает результаты в сообщении SPI_IC_DISC_RESULT. Результат сохраняется в базе и отображается в интерфейсе администратора по запросу при просмотре журнала вызовов.

В блоке Optional process показан процесс получения значений переменных. Если CPE.SN получает сообщение с переменными, то значения переменных запрашиваются у модуля SN.Core. Модуль запрашивает переменные у источника, который настроен в параметрах списка оповещения. Полученные значения передаются на модуль CPE.SN.

5.4.2 Процедура обработка сценария рассылки SMS

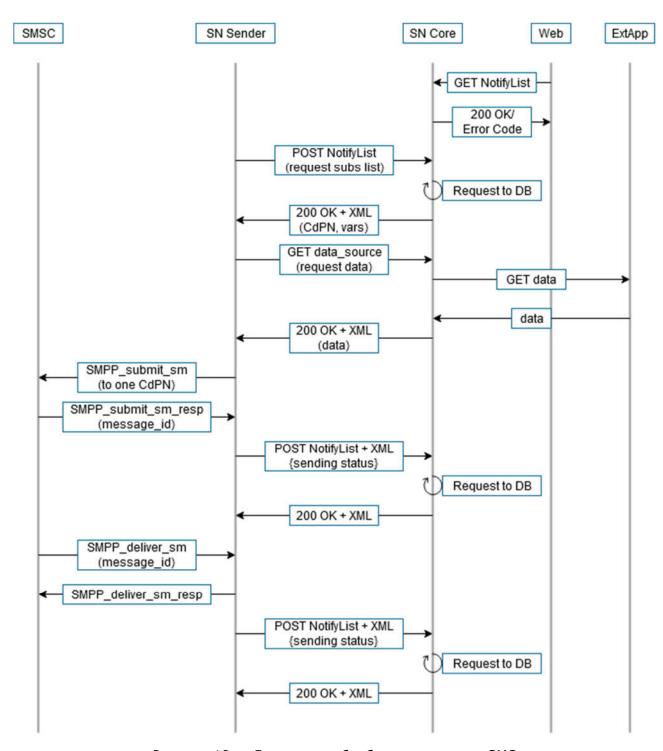


Рисунок 19 — Диаграмма обработки сценариев SMS

Алгоритм:

- 1. Пользователь авторизуется в системе через Web-интерфейс.
- 2. Пользователь выбирает список оповещения. Web отправляет запрос ядру SN.Core на получение списка оповещения:

notify list?method=get

3. Администратор активирует список оповещения. На ядро SN.Core передается запрос:

notify list?method=start

- 4. Ядро проверяет параметры списка.
- если проверка пройдена, статус списка меняется на "Активен". SN.Core отвечает Web сообщением 200 ОК.
- если проверка не пройдена, SN.Core отвечает 200 ОК с описанием ошибки в теле ответа http/xml.
- если проверка не пройдена по каким-либо причинам: нет подключения к базе данных, не найден список оповещения, etc. отправляется ответ, отличный от 200 ОК.
- 5. CPE.SN периодически отправляет запрос на модуль SN.Core с целью уточнить список абонентов для оповещения с типом Voice, передавая текущие ограничения по одновременному количеству вызовов и результаты текущих рассылок.
- 6. SN.Core проверяет ограничения списка по количеству абонентов и ограничения CPE.SN.
- 7. На SN.Core формируется перечень номеров и передается в теле ответного сообщения 200 ОК на модуль CPE.SN.
- 8. После получения номеров CPE.SN передает узлу SMSC команду на отправку вызова по каждому номеру, SMPP_submit_sm.
- 9. SMSC передает результаты на модуль CPE.SN после получения ответов SMPP_submit_sm_resp. Отправляемый результат зависит от настроек модуля:
- если настроено ожидание статуса доставки, SMPP_deliver_sm, то при получении SMPP_submit_sm_resp на модуль SN.Core передается результат "Ожидание доставки";
- если ожидание SMPP_deliver_sm не настроено, то при получении SMPP_submit_sm_resp на модуль SN.Core передается результат "Оповещен".
- 10. Результат сохраняется в базе и отображается в интерфейсе администратора по запросу при просмотре журнала вызовов.

В блоке Optional process описан алгоритм получения значений переменных, если в тексте сообщений используются переменные, например, "Ваш баланс #balance py6.".

- 1. CPE.SN запрашивает у модуля SN.Core значение переменной balance.
- 2. SN.Core отправляет запрос на источник данных.
- 3. После получения ответа SN.Core возвращает модулю CPE.SN полученное значение.
- 4. CPE.SN выполняет подстановку значения в текст.

6 PROTEI SMSFW

6.1 Описание системы

Система PROTEI SMS Firewall является инструментом, позволяющим обнаруживать и избегать любого типа SMS-мошенничества. Данное решение предотвращает распространение по сети Оператора неавторизованного SMS-трафика, как MO/MT, так и транзитного.

Основные задачи системы PROTEI SMS Firewall:

- защита от спуфинга;
- защита от фэйкинга;
- защита от флудинга;
- фильтрация по контенту;
- индикация и блокировка.

6.2 Функциональные возможности

Система PROTEI SMS Firewall выполняет следующие функции:

- гибкое управление маршрутизацией и политиками на основе параметров пакетов: информация об адресах SCCP и сетевого узла, типе пакета, OpCode, AgeOfLocation и т.д.;
- широкий диапазон критериев для фильтрации сообщений SS7:
- фильтрация на уровне SCCP;
- фильтрация на прикладного уровне: МАР-/САР-сообщений категории 1-3.
- защита от флуда, предохраняющая сеть от массовой отправки MSU с тем же OpCode или отправителем на базе анализа PC или GT:
- поддержка GSM MAP Phase 1, 2, 3;
- поддержка подключения на основе SIGTRAN соединениями M3UA и M2PA;
- масштабируемость по мере роста сети, горизонтальное масштабирование;
- журналирование событий и всей активности генерацией журналов CDR, отчетов из Web-интерфейса и сбором подробной статистики;
- управление нагрузкой: применение режима распределения нагрузки или дублирования 1+1;
- удаленное управление конфигурацией через защищенное соединение;
- Web-система администрирования;
- создание записей CDR/EDR, обработка показателей трафика и подсистема мониторинга сети;
- полнофункциональный мониторинг сети на основе протокола SNMP.

6.3 Основные сценарии при обнаружении или подозрении на мошенничество

Ниже представлены типичные сценарии обнаружения и блокирования фрода, выполняемые в системе PROTEI SMSFW. Поле «Действие» указывает операцию, которая применяется к мошенническому трафику. Поддерживаются следующие операции:

- Отбой передача сообщения прекращается и не обрабатывается;
- Авария на систему мониторинга отправляется SNMP авария о том, что определенное событие имело место;
- Уведомление в системе генерируется соответствующий CDR.

Действия могут настраиваться в соответствии с предпочтением Оператора.

Таблица 2 — Сценарии для противодействия мошенничеству

N	Сценарий проверки	Действие		
Обработка MO-SMS от роумеров, зарегистрированных заграницей				
1	Верификация VLR. Проверка нахождения отправителя МАР-МО- FSM в сети, из которой получен запрос:	Отбой		
	генерируется запрос MAP-SRI-SM (CdPN = MSISDN отправителя), производится сверка адреса MSC, полученного в MAP-SRI-SM_resp с адресом CgPN в MO-FSM.			
	Если отправка MAP-SRI-SM не удается, либо полученные VLR- адреса принадлежат разным сетям, MAP-MO-FSM отбивается.			
2	Проверка попадания SCCP-адреса вызывающей стороны в белый список — проверка наличия соглашения о взаимодействии.	Уведомление		
3	Проверка адреса SCCP на принадлежность к собственной стране.	Отбой		
4	Проверка адреса SMSC на попадание в белый список.	Уведомление		
5	Проверка префикса MSISDN отправителя.	Отбой		
6	Контроль количества отправляемых за единицу времени сообщений абонентами, зарегистрированными за границей домашней сети. Контроль осуществляется в масштабах сети, в которой зарегистрирован абонент.	Отбой Авария		
MAP-MT-SRI-SM от международных и локальных операторов				
7	Проверка SCCP-адреса вызывающей стороны на попадание в черный список.	Отбой		
8	Сопоставление SCCP-адреса вызывающей стороны и адреса SMSC, SM-RP-OA, на принадлежность разным сетям.	Уведомление		
MAP-MT-FSM от международных и локальных операторов				
9	Контроль превышения длины адреса SMSC, SM-RP-OA, минимально допустимого значения.	Отбой		
10	Проверка адреса SMSC, SM-RP-OA, на попадание в черный список.	Отбой		

N	Сценарий проверки	Действие		
11	Сравнение адреса SMSC, SM-RP-OA, и SCCP-адреса вызывающей стороны на принадлежность к одной сети.	Уведомление		
12	Сопоставление адресной информации отправителя на уровне SCCP-сообщений MT-FSM и соответствующего MAP-SRI-SM.	Отбой		
13	Проверка количества сообщений в единицу времени для SCCP- адреса отправителя или адреса SMSC.	Отбой Авария		
14	Проверка количества сообщений в единицу времени для сети, из которой приходит сообщение по префиксу GT.	Отбой Уведомление		
15	Сравнение полного количества MAP-MT-FSM за интервал времени с допустимым предельным значением.	Авария		
Исходящие MAP-MT-SMS				
16	Проверка адреса получателя SCCP на попадание в черный и белый список.	Отбой		
17	Сравнение количества SMS, отправляемых в сеть в единицу времени, с максимально допустимой величиной по префиксу GT.	Авария		
18	Сопоставление соотношения MAP-SRI-SM/MT-FSM с допустимой величиной.	Отбой Авария		
Анализ на SCCP-/TCAP-уровне				
19	Сравнение количества UDTS в единицу времени с допустимой величиной.	Уведомление		
20	Сравнение неожидаемых сообщений TCAP_END, для которых не найдены соответствующие TCAP_BEGIN, сравнение с допустимой величиной.	Уведомление		
21	Сравнение количества ТСАР-ошибок "unidentified Subscriber" и "unknown Subscriber" с допустимой величиной.	Уведомление		

6.4 Противодействие SMS-спуфингу МО

GSMA SMS Fraud White Paper определяет спуфинг как:

- нелегальное использование SMS-центра домашней сети третьей стороной;
- MO-SMS с измененным MSISDN отправителя, существующим или нет, что поступило в домашнюю сеть от удаленного VLR с реально существующего или вымышленного SCCP-адреса;
- MO-SMS, приходящие из удаленных сетей с модифицированными параметрами, представляющиеся отправленными домашними абонентами сети, которые находятся в роуминге;
- незаконную подмену идентификатора абонента/сети.

При SMS-спуфинге мошенник пытается выдать себя за легитимного абонента домашней сети в роуминге.

Проблемы, возникающие из-за SMS-спуфинга:

- возможность имитировать идентификатор реально существующего абонента, и отправлять сообщения бесплатно от его имени;
- потенциальная потеря прибыли;
- тарификация SMS-трафика, не принадлежащего абоненту;
- вероятность смены сети на более безопасную при обнаружении взлома идентификатора.

Для обнаружения спуфинга SMS Firewall выполняет процедуру верификации VLR, в процессе которой проверяется действительное местонахождение абонента путем отправки на HLR сообщения MAP-SRI-SM.

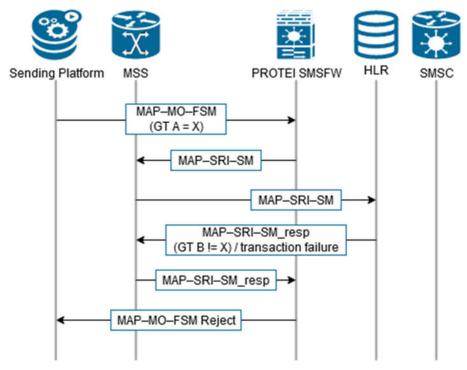


Рисунок 20 — Диаграмма обнаружения SMS-спуфингу

Если в ответе на MAP-SRI-SM от HLR указано местонахождение абонента, отличное от адреса отправителя MO-сообщения, система делает вывод, что имеет место спуфинг, и блокирует передачу данного сообщения на SMSC.

Отбой сообщения может быть заменен, например, на генерацию соответствующего CDR или отправку SNMP-трапа с уведомлением о подозрении на спуфинг.

Если содержимое ответа MAP-SRI-SM_resp подтверждает местонахождение абонента, MO-сообщение перенаправляется на SMSC оператора.

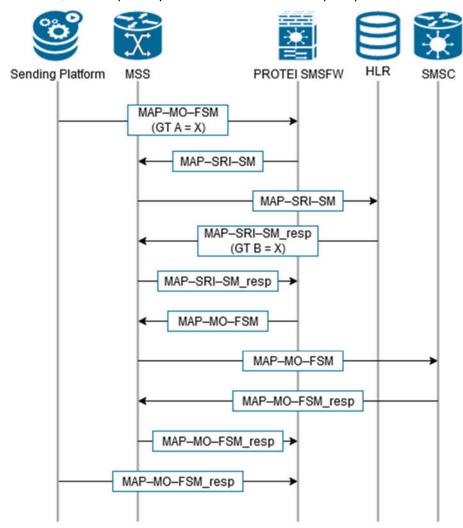


Рисунок 21 — Диаграмма передачи исходящего сообщения на SMSC оператора

6.5 Противодействие SMS-фейкингу MT

GSMA SMS Fraud White Paper определяет SMS-фейкинг как:

- манипуляцию SCCP-/MAP-адресов;
- фальшивое сообщение поступает из международной SS7-сети и доставляется в мобильную сети;
- SCCP-/MAP-адреса, SMSC_GT/A_MSISDN, либо являются недействительными, либо совпадают с параметрами существующего абонента.

При SMS-фейкинге мошенники получают доступ к международной SS7-сети и посылают сообщения, имитируя отправку с легитимного SMS-центра. Адресная информация SMS-центра подвергается определенной манипуляции, чтобы отправляемые сообщения выглядели для получателя как сообщения из сети-компаньоне оператора при обмене SMS.

Проблемы, возникающие из-за SMS-фейкинга:

- потеря прибыли вследствие отправки сообщений, которые невозможно тарифицировать;
- осуществление операций на международном уровне, которые очень сложно отследить.

SMS Firewall обнаруживает факт фейкинга применением адресных и фейкинговых фильтров:

- адресные фильтры используются для проверки адресов SMS-центра, SCCPадреса вызывающей стороны, A_MSISDN, IMSI по предопределенным правилам. Определяется ряд факторов:
 - О принадлежность к сети, с которой домашняя сеть имеет соглашение об сотрудничестве;
 - О соответствие длины адресной информации заданной маске;
 - О на принадлежность адреса сети домашней страны;
 - О соответствие черным/белым спискам и пр.
- фейкинговые фильтры используются для поиска несоответствия адресной информации на уровнях SCCP, TCAP, MAP и на уровне содержимого. Данные фильтры применяются для идентификации фейкинга, когда при использовании валидного адреса SMS-центра адрес отправителя на уровне SCCP не валиден.

6.5.1 Обнаружение модификации адреса SMSC

Мошенник подменяет адрес отправителя удаленного SMS-центра путем модификации адреса на SCCP-/MAP-уровне.

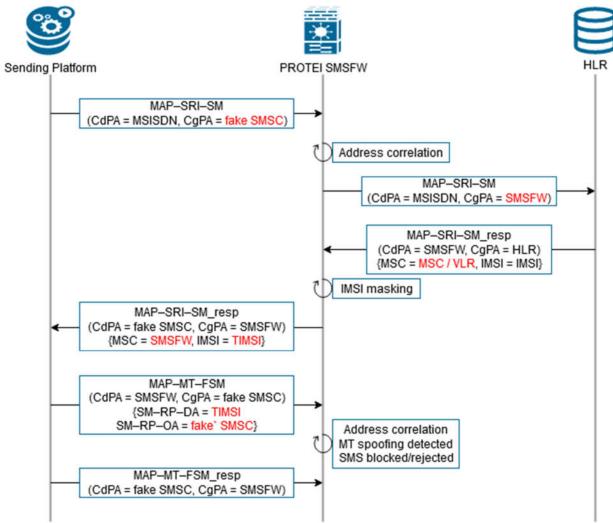


Рисунок 22 — Диаграмма обнаружения поддельного адреса SMSC

Проверка на наличие такого рода мошенничества выполняется путем сверки адреса SMSC на MAP-уровне и адреса SMSC на SCCP-уровне.

- в случае несовпадения сообщение MAP-MT-FSM блокируется;
- если адреса на обоих уровнях совпадают, значит, отправитель сообщения является действительно тем SMS-центром, за который себя выдает. Сообщение маршрутизируется для дальнейшей доставки абоненту.

6.5.2 Обнаружение модификации адреса отправителя

Сеть, выполняющая фейкинг, пытается избежать тарификации за отправление MAP-MT-FSM, модифицируя адрес отправителя MT-FSM.

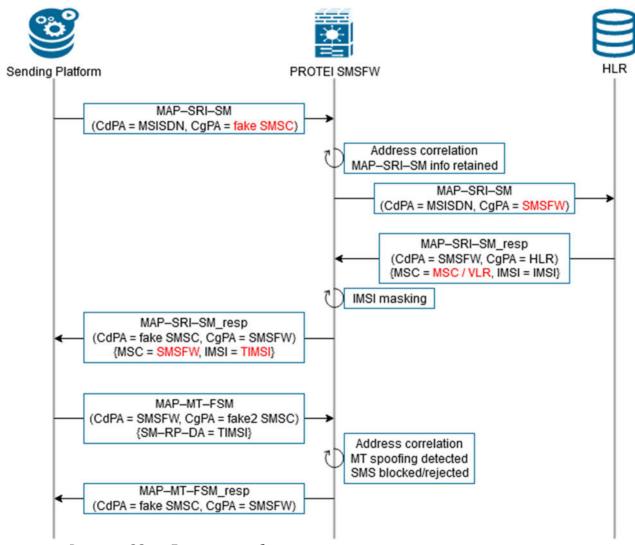


Рисунок 23 — Диаграмма обнаружения поддельного адреса отправителя

В ответе на сообщение MAP-SRI-SM указывается адрес SMS Firewall, таким образом, MAP-MT-FSM автоматически попадает на платформу. В ответе на MAP-SRI-SM SMS Firewall отправляет замаскированный IMSI для последующего сопоставления адресаисточника MAP-SRI-SM и последующего MAP-MT-FSM.

Если данные адреса не соответствуют друг другу, делается вывод о наличии фейкинга, и сообщение блокируется.

В данной попытке фейкинга мошенническая сеть может быть идентифицирована, так как адресация в сообщении MAP-SRI-SM должна быть действительной, в противном случае сообщение MAP-MT-FSM не будет доставлено.

6.5.3 Маскирование IMSI и местонахождения абонента.

В данном сценарии скрываются две группы параметров — местонахождения абонента и его IMSI. Номер IMSI маскируется, чтобы предотвратить его самостоятельное использование либо вкупе с местонахождением абонента для создания спуфингового запроса MAP-MO-FSM на SMS-центр оператора. SMS Firewall автоматически выполняет маскирование информации, и впоследствии может отследить попытки спуфинга.

В данном случае система будет знать фактический адрес мошенников, так как исходное сообщение MAP-SRI-SM должно прийти с действительного адреса, иначе информация о местонахождении и номере IMSI не будет получена. Схема обмена сообщениями идентична как для случая абонента в роуминге, так и для абонента в домашней сети.

6.6 Противодействие SMS-флудингу

GSMA SMS Fraud White Paper определяет SMS-флудинг как:

- подачу большой нагрузки на один или несколько элементов;
- нагрузка может содержать как валидные, так и не валидные сообщения;
- единственный параметр, определяющий флудинг количество сообщений, передаваемых в единицу времени.

Флудинг характеризуется получением чрезмерно большого количества трафика от одного и того же источника. По своей сути является частным случаем спама.

Проблемы, возникающие из-за SMS-флудинга:

- в наиболее тяжелом случае воздействие флудинга на сеть может быть сопоставимо воздействием с DOS-атаки. Например, HLR может принимать чрезмерно большое количество запросов;
- снижение уровня качества обслуживания;
- не получение прибыли;
- снижения лояльности абонентов;
- получение абонентами большого количества сообщений на свой телефон.

Защиту сети от флудинга SMS Firewall осуществляет следующими операциями:

- ограничение интенсивности трафика от определенного MSISDN/SMSC/GT;
- проверка соотношения между исходящим и входящим трафиком для определенной сети;
- обнаружение GT-сканирования;
- проверка соотношения MAP-SRI-SM/MT-FSM;
- обнаружение сообщений с одинаковым содержимым с возможностью эвристического анализа.

7 PROTEI SMPP Proxy/Router

7.1 Описание системы

Система SMPP Proxy/Router — устройство со специализированным программным обеспечением, позволяющее осуществлять транзит SMPP-сообщений между SMSC/SGW и внешними приложениями.

Применение системы даёт возможность подключения нескольких внешних приложений к центру/шлюзу обработки коротких сообщений, а также пересылку SMS-сообщений через шлюз без использования ресурсов основного SMSC.

7.2 Функциональные характеристики

Система SMPP Proxy/Router выполняет следующие функции:

- поддержка произвольного количества одновременных SMPP-соединений;
- обработка сообщений по гибким правилам: в зависимости от типа сообщения, номеров получателя/отправителя, IP-адреса приложения и т.д.;
- поддержка белых/чёрных списков получателей отдельно для каждого приложения;
- контроль доступа к внешним приложениям;
- распределение нагрузки на внешние приложения;
- единое гибкое конфигурирование правил обработки и прав доступа;
- запрос профиля абонента по протоколу XML для организации биллинга;
- динамическая перезагрузка системы;
- поддержка резервирования SMPP-направлений;
- ведение детализированных журналов CDR по всем типам транзакций;
- управление конфигурацией и контроль функционирования системы:
 - О через модем;
 - О через терминал, подключенный через интерфейс RS-232;
 - О через сессию Telnet по протоколу TCP/IP.

7.3 Сетевая архитектура SMPP Proxy/Router

Система SMPP Proxy/Router может интегрироваться в сеть двумя способами:

- посредник между внешними приложениями и SMSC;
- посредник между SMSC различных операторов.

7.3.1 Подключение SMPP Proxy/Router между SMSцентром и внешними приложениями

На Рисунке 24 приведена схема внедрения системы PROTEI SMPP Proxy/Router при подключении между SMSC и External Apps.



Рисунок 24 — Схема внедрения SMPP Proxy/Router для подключения внешних приложений

Основным преимуществом схемы является возможность маршрутизации запросов напрямую от External Apps к абонентам. При доступности абонента не используется функция отложенной доставки основного SMSC. Тем самым снижается его загрузка и освобождаются ресурсы для выполнения основных задач.

7.3.2 Подключение SMPP Proxy/Router между SMSцентрами разных операторов

На Рисунке 25 приведена схема внедрения системы PROTEI SMPP Proxy/Router при подключении между SMSC операторов 1 и 2.

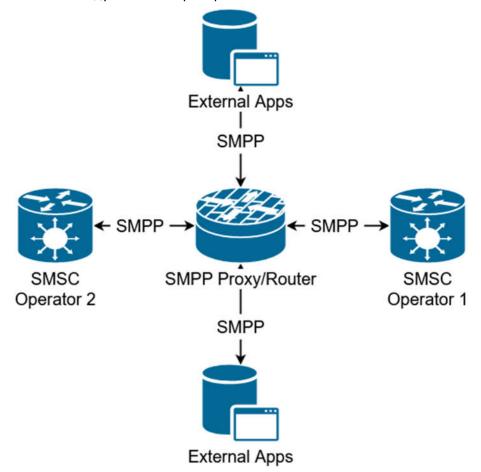


Рисунок 25 — Схема подключения SMPP Proxy/Router между SMSC операторов

В этом случае абонентам различных операторов обеспечиваются обмен SMS-сообщениями и единые SMS-услуги.

Для подобного режима допускается подключение к SMPP Proxy/Router внешних приложений операторов.

7.4 Тарификация трафика

Тарификация трафика осуществляется по протоколу Diameter. При создании SMPP-подключения и отправке сообщения производится МТ-тарификация получателя. Для каждого SMPP-направления выбирается тип тарификации: за каждую часть SMS-сообщения или же за одно.

На Рисунке 26 приведена схема взаимодействия узлов при тарификации трафика.

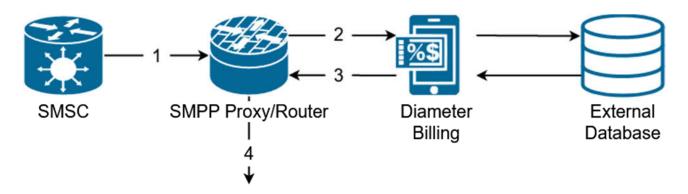


Рисунок 26 — Схема тарификации трафика

Алгоритм:

- 1. При поступлении SMPP_submit_sm или SMPP_deliver_sm анализируются параметры tpi-направлений.
- 2. Если значения заданы, то формируется запрос с номерами CgPN и CdPN абонентов к узлу Diameter Billing.
- если произошла ошибка связи с биллингом, но при этом допускается дальнейшая обработка SM, то продолжается стандартная процедура отправки;
- если же такая обработка не предусмотрена, то SMS отклоняется.
- 3. Diameter Billing взаимодействует с внешней базой данных.
- 4. После получения ответа от внешней базы данных Diameter Billing отправляет ответ узлу SMPP Proxy/Router.
- если получен ответ от биллинга вида RESULT=1, то продолжается отправка SM;
- при получении другого результата SMS отклоняется.

8 PROTEI CBC

8.1 Описание системы

PROTEI Cell Broadcast Center предназначен для передачи информации всем абонентам сети GSM, находящимся в определенном сегменте зоны обслуживания оператора: сота, регион, с использованием технологии Cell Broadcast. Внедрение системы открывает широкие возможности для операторов GSM-/LTE-сетей и сервис-провайдеров для доставки и вещания территориально зависимого контента.

Система поддерживает открытый интерфейс на основе JSON для контентпровайдеров и других сервисов с использованием вещательных кампаний. Для
взаимодействия с сетевыми узлами BSC, RNC, eNodeB реализованы интерфейсы согласно
3GPP-спецификациям. Архитектура сервисов и команд разработана в строгом
соответствии с документами 3GPP и с учетом рекомендаций ETSI. Это позволяет
использовать систему не только для технологических или маркетинговых трансляций, но и
как часть систем экстренного оповещения, предусмотренных законодательством в
конкретной стране.

Система поддерживает открытый протокол SMPP для взаимодействия с внешними контент-провайдерами и протоколы TCP/IP или х.25 для подключения к BSC. PROTEI CBC совместим с оборудованием BSC всех ведущих производителей. Применение комплекса совместно с технологией SIM Toolkit позволяет абоненту интерактивно взаимодействовать с системой через SIM-меню.

8.2 Функциональные возможности

Система PROTEI CBC выполняет следующие функции:

- хранение сообщений до момента передачи в эфир;
- взаимодействие с внешними контент-провайдерами по протоколу SMPP;
- создание расписания для передачи сообщений;
- использование технологии прерывистой передачи DTX;
- администрирование системы оповещения;
- конфигурация аварийной индикации;
- гибкая настройка параметров вещания и передачи сообщений.

8.3 Внутренняя архитектура

На Рисунке 27 приведена внутренняя архитектура модуля PROTEI CBC с отдельными выделенными модулями и подсистемами.

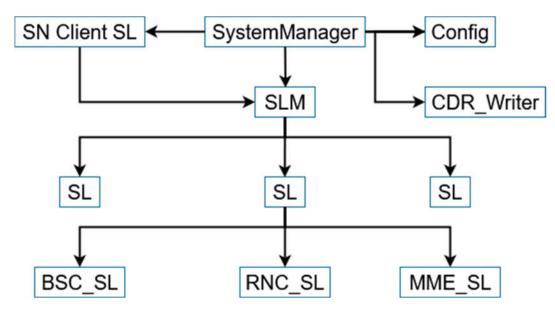


Рисунок 27 — Внутренняя архитектура PROTEI CBC

Protei CBC состоит из следующих подсистем и модулей:

- SystemManager, менеджер системы предназначен для создания, инициализации и запуска основных классов и интерфейсов;
- ServiceLogic, сервис-логика корневой каталог, содержащий представленные в приложении логики:
 - O SLM (Service Logic Manager) менеджер распределения вызовов по сервис-логикам, также контролирует процент их занятости и при необходимости генерирует аварию на перегрузку;
 - O SL (Service Logic) корневая сервис-логика, распределяет входящие транзакции по дочерним логикам в соответствии с их типом и имеющимися лицензионными ограничениями, закрывает с ошибкой все транзакции, которые не могут быть распределены в обработку:
 - BSC_SL сервис-логика обработки запросов для сетей 2G, протокола CBSP;
 - RNC_SL сервис-логика обработки запросов для сетей 3G, протокола SABP;
 - MME_SL сервис-логика обработки запросов для сетей 4G, протокола SBc-AP.
- SN2 корневой каталог, в котором описано взаимодействие CBC с SN Core:
 - O SN Client SL—сервис-логика для обработки запросов от SN Core.
- Config, подсистема управления конфигурацией отдельные интерфейсы для работы с каждым конфигурационным файлом;
- CDR подсистема записи CDR.

8.4 Диаграммы обмена данных

8.4.1 Процедура обслуживания вызова JSON от CBE

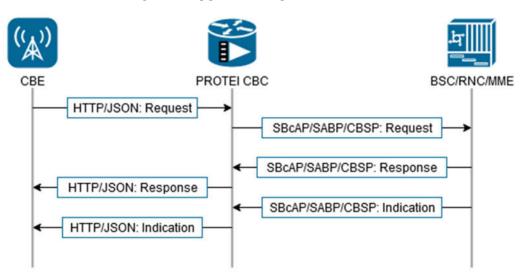


Рисунок 28 — Обработка HTTP-/JSON-запроса от CBE

8.4.2 Процедура обслуживания вызова XML от ядра оповещения

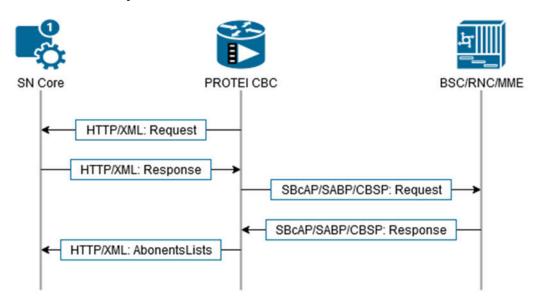


Рисунок 29 — Обработка HTTP-/XML-запроса от SN.Core

9 PROTEI IP-SM-GW

9.1 Описание системы

PROTEI IP-SM-GW, IP Short Message Gateway — продукт операторского класса, обеспечивающий взаимодействие SMS-сообщений и сетей IMS. Это позволяет доставлять SMS-сообщения пользователям, которые зарегистрированы не в 3GPP мобильных IP-сетях: Wi-Fi, WiMAX. Также может рассматриваться как альтернатива традиционным методам доставки SMS-сообщений: CS, GPRS.

IP-SM-GW также позволяет доставлять SMS в обратном направлении, от абонентов IMS-сетей пользователям коммутационных пакетных 2G-/3G-сетей. Данный тип взаимодействия, SMS over IP, позволяет предоставлять все существующие SMS-услуги абонентам IMS-сетей, в том числе и сервисы с дополнительной оплатой.

Кроме вышеуказанных возможностей, IP-SM-GW способен поддерживать родной сервис взаимодействия между SMS и приложениями на основе SIP. При этом SMS конвертируется в SIP-запрос. Со стороны UE в сети IMS не требуется поддержка SMS-технологии.

Тем не менее, размер SIP-сообщения должен быть хотя бы на 200 байт меньше MTU. Если узел принимает сцепленное SMS-сообщение, а размер SIP MESSAGE превышает возможный лимит, IP-SM-GW должен использовать сессионный режим. Под сцепленным сообщением понимается набор сообщений стандартной длины, вместе формирующих одно большой длины. Сессионный режим предполагает изначальную установку сессии между IMS UE и IP-SM-GW с помощью запроса SIP INVITE от узла к пользователю.

9.2 Функциональные возможности

Система PROTEI IP-SM-GW выполняет следующие функции:

- определение сети CS/PS/IMS для доставки SMS-сообщения;
- подключение к GMSC/IWMSC/HSS по установленным протоколам MAP;
- ответ на запросы MAP-SRI-SM, сделанные и отправленные HSS через GMSC;
- получение адреса MSC/SGSN для доставки MT-SMS в CS/PS;
- получение и поддержание актуальной о связях между MSISDN, IMSI и адресом службы S-CSCF пользователя;
- проверка наличия действительного адреса отправителя в SMS и адреса получателя при получении IMS-сообщения для пользователя SMS;

Примечание. IP-SM-GW получает адреса из SIP-заголовков IMS-сообщения.

- сопоставление MSISDN/IMSI получателя с Tel URI при получении SMS для устройств, использующих IP;
- выполнение функций сервера приложений для ядра IMS;
- выбор верной сети для доставки сообщения получателю и получения адресов MSC/SGSN от HSS;
- управление флагами доступности пользователя для отправления SMSсообщений в HSS.

Дополнительные функции IP-SM-GW при передаче сцепленных SMS-сообщений в сетях IMS:

- взаимодействие с UE с помощью средств отправки сообщений в сетях IMS, сохраняя формат и функциональность SMS-сообщения;
- хранение и передача статусов сцепленных SMS-сообщений;

- хранение абонентских данных службы коротких сообщений, текущей сети CS/PS и дополнительных служебных данных об авторизации сцепленных сообщений;
- авторизация SM в MSC/SGSN;
- выполнение авторизации услуги.

Примечание. Для узла IP-SM-GW не обязательна поддержка всех функций MAP.

9.3 Сетевая архитектура

На Рисунке 30 приведена сетевая архитектура системы PROTEI IP-SM-GW и ее взаимодействия с другими узлами.

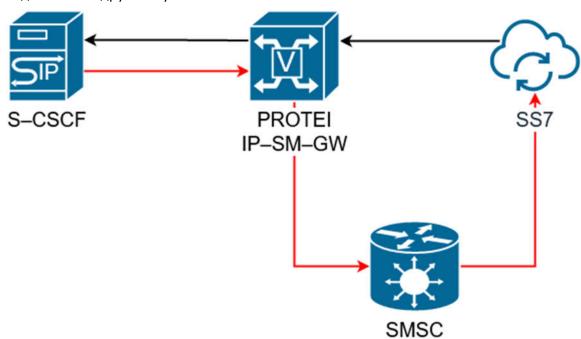


Рисунок 30 — Сетевая архитектура системы PROTEI IP-SM-GW

Когда SMS-сообщение отправляется к IMS-пользователю, сообщение маршрутизируется по SS7 к IP-SM-GW. Узел помещает полученную SMS в качестве контента специального типа в SIP MESSAGE и направляет его в S-CSCF для дальнейшей маршрутизации;

Когда IMS-абонент отправляет SIP-сообщение с SMS в качестве специального типа контента, IP-SM-GW извлекает его и направляет в SMSC для дальнейшей доставки по сетям SS7;

IP-SM-GW способен поддерживать родной сервис взаимодействия между SMS и приложениями на основе SIP. При этом SMS конвертируется в SIP-запрос. Со стороны UE в сети IMS не требуется поддержка SMS-технологии.

9.4 Внутренняя архитектура

На Рисунке 31 приведена внутренняя архитектура системы PROTEI IP-SM-GW с отдельными выделенными модулями и подсистемами.

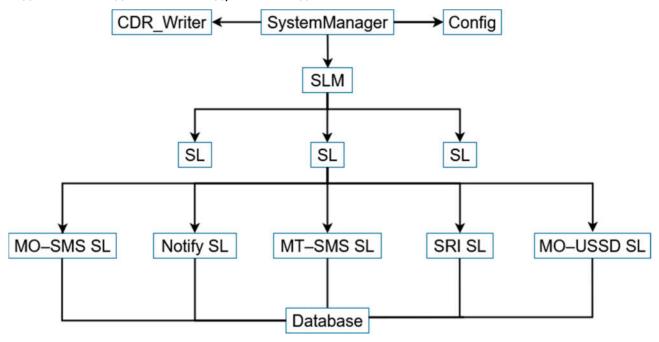


Рисунок 31 — Внутренняя архитектура системы PROTEI IP-SM-GW

Система PROTEI IP-SM-GW состоит из следующих подсистем:

- SystemManager менеджер системы, предназначен для создания, инициализации и запуска основных классов и интерфейсов:
 - O SLM, Service Logic Manager менеджер распределения вызовов по сервис-логикам, также контролирует процент их занятости и при необходимости генерирует аварию на перегрузку;
 - O SL, Service Logic корневая сервис-логика, распределяет входящие транзакции по дочерним логикам в соответствии с их типом и имеющимися лицензионными ограничениями, закрывает с ошибкой все транзакции, которые не могут быть распределены в обработку:
 - MO-SMS SL сервис−логика обработки запросов MAP-MO-*;
 - Notify SL сервис-логика обработки запросов MAP-Unstructured-SupplementaryServices-Notify;
 - MT-SMS SL сервис-логика обработки запросов MAP-MT-*;
 - SRI SL сервис-логика обработки запросов MAP-SRI-*;
 - MO-USSD SL сервис-логика обработки запросов MAP-Unstructured-SS-*.
- Config подсистема управления конфигурацией, включает в себя отдельные интерфейсы для работы с каждым конфигурационным файлом;
- CDR_Writer подсистема записи CDR;
- Database база данных, хранение данных о пользователях и сессионной информации.

9.5 Диаграммы обмена

В таблице ниже описаны обозначения операций в мобильных и SIP-сетях.

Таблица 3 — Операции в мобильных и SIP-сетях

Параметр	Описание
MAP-FSM	MAP-ForwardShortMessage
MAP-SRI-SM	MAP-SendRoutingInfo-forShortMessage
MAP-MT-FSM	MAP-MobileTerminated-ForwardShortMessage
MAP-RDR	MAP-Report-SM-Delivery-Status-Request
MAP-Alert-SC	MAP-Alert-ServiceCenter

9.5.1 Процедура регистрации

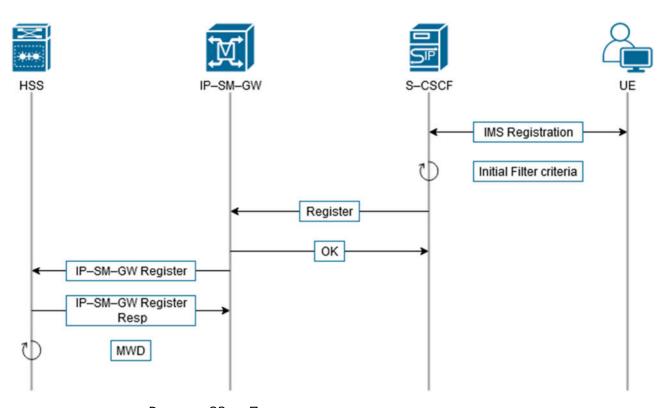


Рисунок 32 — Процедура регистрации пользователя

Алгоритм:

- 1. UE устанавливает IP-соединение.
- 2. После установления IP-соединения UE регистрируется на узле S-CSCF, следуя процедурам IMS-регистрации.

Примечание. Для простоты не все сообщения между UE и S-CSCF; S-CSCF и HSS отображены на диаграммах.

3. S-CSCF проверяет исходные критерии фильтрации, полученные от HSS во время процедуры IMS-регистрации.

- 4. После успешной IMS-регистрации, основываясь на полученных критериях первичного фильтра, S-CSCF сообщает узлу IP-SM-GW/AS о регистрации пользователя.
- 5. IP-SM-GW/AS отвечает сообщением ОК узлу S-CSCF.
- 6. Система IP-SM-GW/AS отправляет запрос на регистрацию IP-SM-GW в HSS.
- 7. При необходимости HSS сохраняет полученную информацию, используя ее как индикатор доступности UE по IMS-сетям для отправки сообщения MAP-AlertSC, если установлен флаг ожидания сообщения, и отвечает на запросы узла IP-SM-GW/AS сообщением IP-SM-GW Register Response.

Примечание. IP-SM-GW Register Response может содержать в пользовательских данных адрес SMSC, используемого для данного пользователя.

Примечание. Для обеспечения бесперебойной работы сервиса адрес IP-SM-GW, сохраненный в HSS во время процедуры регистрации, совпадает с заранее заданным адресом IP-SM-GW, если таковой имеется.

После успешной регистрации адреса IP–SM–GW на HSS, узел проверяет, хранятся ли MWD и оповещают ли все SMSC с помощью процедур, описанных в <u>3GPP TS 23.040</u>.

9.5.2 Дерегистрация, инициированная пользователем

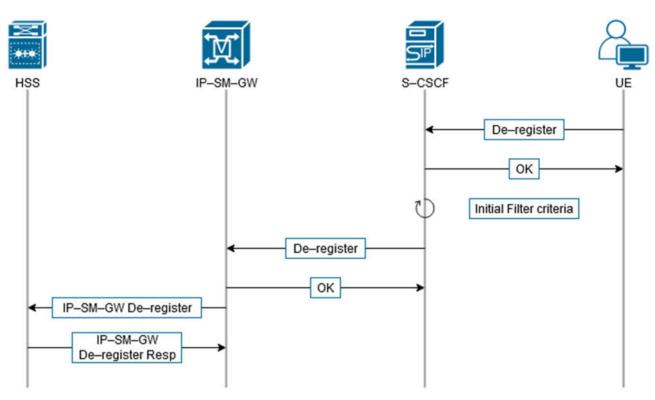


Рисунок 33 — Процедура дерегистрации по инициативе пользователя

Алгоритм:

- 1. После процедуры регистрации UE может инициировать процедуру дерегистрации, отправив запрос на дерегистрацию с заголовком Expires = 0 узлу S-CSCF.
- 2. S-CSCF отвечает UE сообщением ОК.
- 3. S-CSCF проверяет исходные критерии фильтрации, полученные от HSS во время процедуры IMS-регистрации.
- 4. На их основании критериев S-CSCF информирует IP-SM-GW/AS об отмене регистрации пользователя.
- 5. IP-SM-GW/AS отвечает сообщением ОК в S-CSCF.
- 6. IP-SM-GW/AS дерегистрирует UE на узле HSS, посылая соответствующий запрос.
- 7. HSS дерегистрирует UE и отвечает на запрос IP–SM–GW/AS сообщением De–Register Response.

Примечание. Заранее заданный адрес IP-SM-GW в HSS не удаляется, так как он используется для последующей оконечной нагрузки SM.

9.5.3 Дерегистрация, инициированная сетью

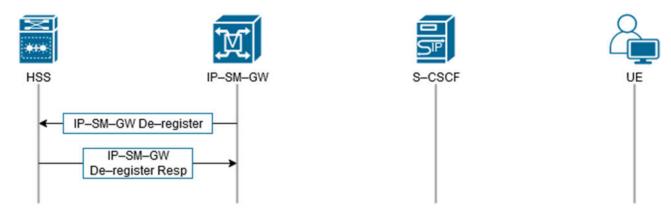


Рисунок 34 — Процедура дерегистрации по инициативе сети

Алгоритм:

- 1. После получения триггера, например, сообщения о дерегистрации от S-CSCF, IP-SM-GW отменяет регистрацию абонента на HSS, посылая запрос о дерегистрации.
- 2. HSS удаляет регистрацию пользователя и отвечает сообщением De-Register Response.

9.5.4 Процедура при успешной обработке сцепленного сообщения SMS_MO

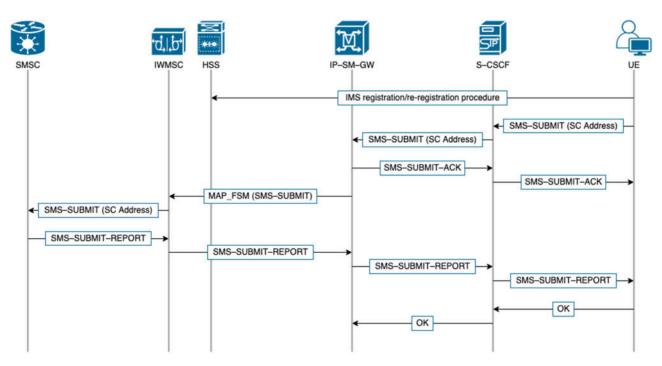


Рисунок 35 — Процедура обработки сцепленного SMS_MO

Алгоритм:

- 1. UE регистрируется на узле S-CSCF в соответствии с процедурой регистрации IMS. Обратите внимание, что I-CSCF и P-CSCF на этом рисунке не показаны.
- 2. SMSC переправляет короткое сообщение, SMS-DELIVER, узлу SMS-GMSC.
- 3. SMS-GMSC направляет запрос на HSS для получения маршрутной информации. На основе предварительно сконфигурированного адреса IP-SM-GW для пользователя, HSS перенаправляет запрос соответствующему узлу IP-SM-GW.

Примечание. Запрос MAP-SRI-SM не пересылается, если изначально был отправлен с IP-SM-GW. Если определен только один адрес IP-SM-GW, то не обязательно его задавать в настройках HSS, MAP-SRI-SM возможно направить на STP-уровень.

- 4. HLR/HSS передает адреса текущих MSC и SGSN узлу IP–SM–GW для доставки короткого сообщения по CS–/PS–домену.
- 5. S-CSCF пересылает SIP Message ACK на UE.
- 6. IP-SM-GW выполняет сервисную авторизацию на основе хранимых данных пользователей. IP-SM-GW проверяет наличие разрешения у абонента на использование услуг коротких сообщений аналогично авторизации, выполняемой MSC/SGSN при доставке SMS-сообщения по CS-/PS-домену. Также IP-SM-GW проверяет наличие разрешения у абонента на использование доставку инкапсулированных коротких сообщений по IMS-сетям.
- Если авторизации не пройдена, то IP-SM-GW не пересылает сообщение, а возвращает для UE информацию об ошибке в отчете о неисправности.
- При успешной авторизации IP-SM-GW/AS извлекает короткое сообщение, SMS-SUBMIT, и пересылает его SMSC, используя SMSC-адрес, через узел SMS-IWMSC методами MAP-сигнализации согласно 3GPP TS 23.040.
- 7. SMS-IWMSC перенаправляет короткое сообщение, SMS-SUBMIT, узлу SMSC.

- 8. SMSC отправляет отчёт об отправке, SMS-SUBMIT-REPORT, узлу SMS-IWMSC.
- 9. SMS-IWMSC отправляет отчет об отправке узлу IP-SM-GW/AS.
- 10. IP-SM-GW/AS инкапсулирует отчет об отправке в соответствующий SIP-запрос узлу S-CSCF.
- 11. S-CSCF отправляет отчет об отправке для UE.
- 12. UE отвечает подтверждением SIP-запроса.
- 13. S-CSCF перенаправляет подтверждение SIP-запроса узлу IP-SM-GW/AS.

9.5.5 Процедура при успешной обработке сцепленного сообщения SMS_MT

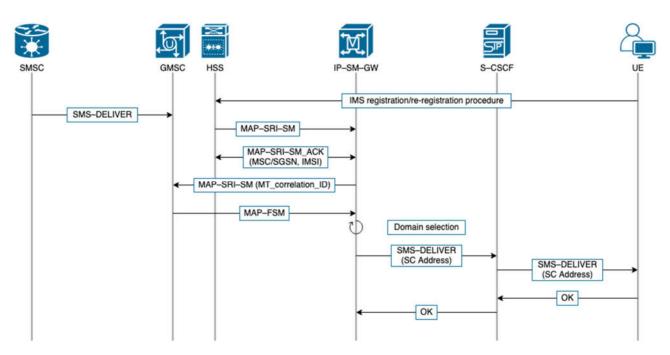


Рисунок 36 — Процедура обработки сцепленного SMS_MO

Алгоритм:

- 1. UE регистрируется на узле S-CSCF в соответствии с процедурой регистрации IMS. Узлы I-CSCF и P-CSCF на рисунке не показаны.
- 2. SMSC переправляет короткое сообщение, SMS-DELIVER, узлу SMS-GMSC.
- 3. SMS-GMSC направляет запрос на HSS для получения маршрутной информации. На основе предварительно сконфигурированного адреса IP-SM-GW для пользователя, HSS перенаправляет запрос соответствующему узлу IP-SM-GW.

Примечание. Если адрес IP-SM-GW не настроен заранее в HSS, MAP-SRI-SM перенаправляется на STP-уровень, IP-SM-GW отправляет свой адрес в качестве маршрутной информации узлу SMS-GMSC после получения переадресованного запроса. Запрос MAP-SRI-SM не пересылается, если изначально был отправлен с узла IP-SM-GW. Если определен только один адрес IP-SM-GW, то не обязательно его задавать в настройках HSS, MAP-SRI-SM возможно направить на STP-уровень.

4. HLR/HSS передает адреса текущих MSC и SGSN для доставки короткого сообщения по CS-/PS-домену и IMSI узлу IP-SM-GW для стыкования получения короткого сообщения из MT Correlation ID с IMSI в запросе MAP-FSM.

- 5. IP-SM-GW создает идентификатор MT Correlation ID согласно <u>3GPP TS 23.040</u>, связывающий MAP-SRI-SM с последующими сообщениями MAP-FSM и хранит вместе с IMSI получателя. IP-SM-GW отправляет только свой адрес вместе с MT Correlation ID в качестве маршрутной информации узлу SMS-GMSC.
- 6. IP-SM-GW выполняет сервисную авторизацию на основе хранимых данных пользователей. IP-SM-GW проверяет наличие разрешения у абонента на использование услуг коротких сообщений аналогично авторизации, выполняемой MSC/SGSN при доставке MWD для SMS-сообщения по CS-/PS-домену.
 - Также IP-SM-GW проверяет наличие разрешения у абонента на использование доставку инкапсулированных коротких сообщений по IMS-сетям.
- Если авторизации не пройдена, то IP-SM-GW не пересылает сообщение, а возвращает для UE информацию об ошибке в отчете о неисправности.
- В ином случае IP–SM–GW выполняет выбор предпочтительного домена для доставки сообщения в соответствии с политикой оператора и предпочтениями пользователя. Логика выбора предпочтительного маршрута для доставки зависит от реализации.
- 7. Если предпочтительным доменом является IMS, то IP-SM-GW/AS использует tel URI, связанный с IMSI полученного сообщения требуемому UE, для отправки короткого сообщения, SMS-DELIVER (SMSC Address), которое инкапсулировано в соответствующий SIP-метод для S-CSCF.
- 8. S-CSCF направляет инкапсулированное короткое сообщение, SMS-DELIVER (SMSC Address).
- 9. UE подтверждает получения SIP-сообщением АСК.

Примечание. Ответ не является отчетом о доставке.

 $10. \quad S-CSCF$ перенаправляет подтверждение SIP-запроса узлу IP-SM-GW/AS.

9.5.6 Процедура отправки отчета о доставке

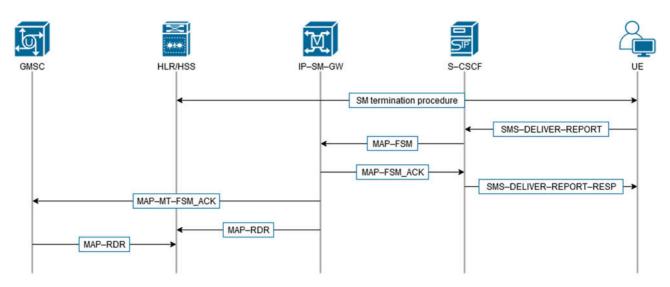


Рисунок 37 — Процедура отправления отчета о доставке

Алгоритм

- 1. UE получает короткое сообщение.
- 2. UE отправляет отчет о доставке, SMS-DELIVER-REPORT, на узел S-CSCF, добавив подтверждение для сообщения из предыдущего пункта.
- 3. S-CSCF перенаправляет отчет на узел IP-SM-GW/AS. Необходимо, чтобы отчет отправился на тот же узел IP-SM-GW, что отправил короткое сообщение в п. 1.
- 4. IP-SM-GW получает подтверждение на уровне SIP получения отчета от S-CSCF.
- 5. S-CSCF направляет подтверждение SIP ACK пользователю.
- 6. IP-SM-GW отправляет отчет о доставке на узел GMSC.
- 7. IP-SM-GW может отправить статус Report-SM-Delivery-Status на узел HSS. Это может активировать процедуру обращения к центру службы аварийных оповещений Alert Service Center или обновление данных MWD на HSS.
- 8. GMSC может отправить статус Report-SM-Delivery-Status на узел HSS. HSS игнорирует информацию в данном отчете.

9.5.7 Процедура при неуспешной отправке сообщения

Примечание. Такая ситуация возможна при малом времени таймера GMSC, тогда IP–SM–GW не хватает времени попытаться отправить сообщения по всем трем доменам.

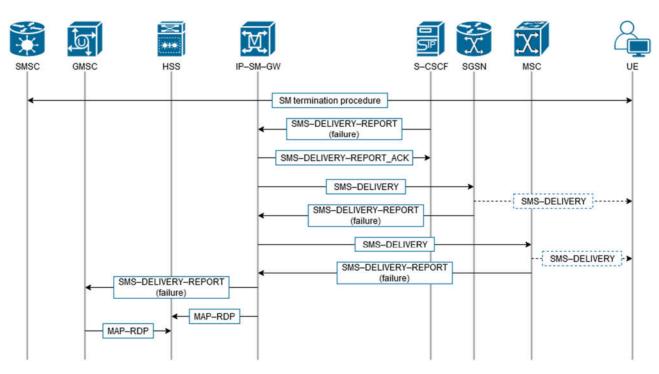


Рисунок 38 — Процедура при не доставлении сообщения пользователю

Алгоритм:

- 1. Короткое сообщение направляется пользователю через узел S-CSCF после выбора домена узлом IP-SM-GW. Все доступные домены перечислены по приоритету. Сообщение не доставлено пользователю, например, из-за недоступности пользователя или нехватки памяти на пользовательском устройстве.
- 2. S-CSCF отправляет соответствующее сообщение о неуспехе согласно обычной процедуре в IMS-сетях в <u>3GPP TS 23.228</u> на узел IP-SM-GW, включая код ошибки. Этот отчет о доставке является подтверждением получения короткого сообщения узлом S-CSCF.

Примечание. Если сообщение о неуспехе отправлено пользовательским оборудованием, S-CSCF направляет сообщение о неудаче узлу IP-SM-GW/AS.

- 3. IP-SM-GW подтверждает причину ошибки узлу S-CSCF.
- 4. Если ошибка вызвана недостатком памяти на UE, IP-SM-GW возвращает отчет о доставке узлу GMSC, и процедура продолжается с п. 10.
- В ином случае IP-SM-GW отправляет короткое сообщение по домену со вторым по величине приоритетом. Предполагается, что указаны узлы SGSN.
- 5. SGSN доставляет сообщение UE, но сообщение не доставлено через PS.

Примечание. Если сообщение доставлено, то далее процедура проводится согласно диаграмме успешной доставки отчета.

- 6. SGSN создает отчет о доставке, SMS-DELIVER-REPORT, и отправляет его на узел IP-SM-GW, включая код ошибки. Этот отчет является подтверждением получения короткого сообщения в предыдущем п.
- 7. IP-SM-GW отправляет короткое сообщение через следующий домен. Предполагается, что MSC были выбраны.
- 8. MSC неуспешно отправляет короткое сообщение на UE.

Примечание. Если сообщение доставлено, то далее процедура проводится согласно диаграмме успешной доставки отчета.

- 9. MSC создает отчет о доставке, SMS-DELIVER-REPORT, и отправляет его на узел IP-SM-GW, включая код ошибки. Этот отчет является подтверждением получения короткого сообщения в предыдущем п.
- 10. IP-SM-GW отправляет отчет о доставке узлу GMSC. Предполагается, что MSC были выбраны.

Примечание. GMSC проверяет доступность лишь по одному домену и не пытается отправить короткое сообщение еще раз после получения сообщения о неуспехе.

- 11. IP-SM-GW отправляет статус Report-SM-Delivery-Status узлу HSS с точными результатами от каждого домена. HSS фиксирует соответствующие MWD: адрес SMSC, где хранится не доставленное сообщение, и причину неуспеха.
- 12. IP-SM-GW оформляет подписку на HSS для одноразового оповещения о доступности UE для принятия сообщения. HSS фиксирует подписку и определяет правило для транспортного уровня отправить оповещение IP-SM-GW при появлении UE в сети, готовым получить короткое сообщение.
- 13. GMSC отправляет статус Report-SM-Delivery-Status на узел HSS. HSS игнорирует информацию в данном отчете.

9.5.8 Процедура обращения к центру аварийного оповещения

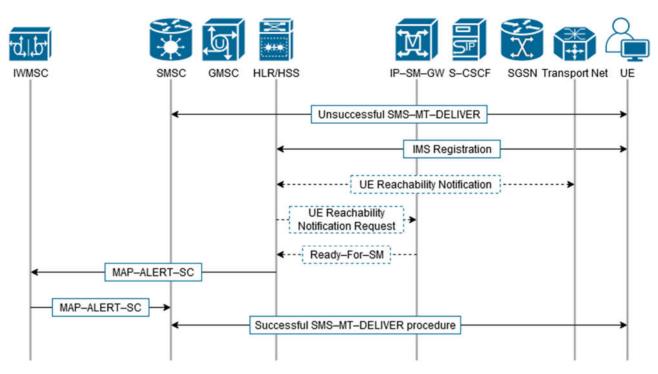


Рисунок 39 — Процедура при не доставлении сообщения пользователю

Алгоритм:

- 1. Сообщение передано от SMSC на узел IP-SM-GW, чтобы доставить пользователю, возможно, после настройки взаимодействия на уровне передачи или услуги. Для обеспечения межсетевой работы IP-SM-GW проверяет доступность UE. Если UE не зарегистрирован в сети IMS, и отправление по CS-/PS-доменам не успешно, IP-SM-GW возвращает соответствующий ответ на SMSC. Узел SMSC сообщает HSS/HLR о недоступности UE. HSS фиксирует соответствующие MWD: адрес SMSC, где хранится не доставленное сообщение, и причину неуспеха. В любой момент после неуспеха отправки сообщения UE может подключиться к CS-/PS-домену, для чего MSC/SGSN отправляет сообщение MAP-Ready-for-SM на узел HLR/HSS. Этот узел запускает процедуру Alert-SC на узле IWMSC, если MWD не пуст, процедура продолжается с п. 3.
- 2. В любой момент после процедуры при неуспешном отправлении сообщения UE может стать доступным в связи с регистрацией в IMS-сети. В этот момент UE-Not-Reachable-for-IP обновляется на узле HSS/HLR. После завершения регистрации в IMS-сети процедура продолжается с п. 3. HSS может получить уведомление на транспортном уровне о доступности UE, например, от MME. Поскольку IP-SM-GW подписан на событие, HSS оповещает об этом узел. Если UE уже зарегистрирован в IMS-сети, IP-SM-GW отправляет сообщение MAP-Ready-for-SM на узел HLR/HSS, процедура продолжается с п. 3.
- 3. HLR/HSS проверяет MWD для UE. Если MWD не пуст, HLR/HSS отправляет сообщение MAP-Alert-SC на узел IWMSC.
- 4. IWMSC перенаправляет Alert-SC на соответствующий SMSC.
- 5. При получении сообщения MAP-Alert-SC узел SMSC еще раз пытается отправить сохраненное короткое сообщение. Сообщение передается на узел IP-SM-GW, а затем на UE после соответствующей подготовки для межсетевого взаимодействия. UE подтверждает получение короткого сообщения.

9.5.9 Процедура оповещения SC при наличии свободного места на UE

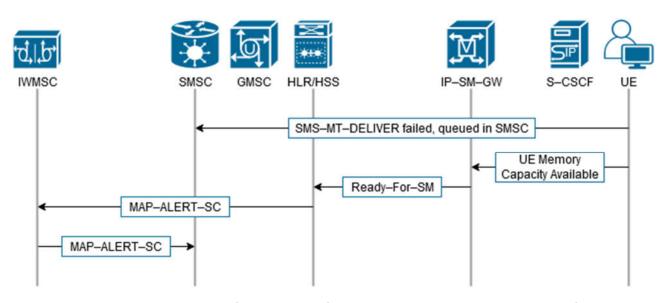


Рисунок 40 — Процедура обращения к Alert-SC при наличии места для сообщения Алгоритм:

- 1. Если попытка отправить сообщение неуспешна из-за нехватки места на UE, сообщение становится в очередь на узле SMSC.
- 2. UE отправляет сообщение на узел IP-SM-GW, оповещая о наличии места.
- 3. IP-SM-GW оповещает HLR/HSS о наличии свободного места на UE.
- 4. HLR/HSS запускает процедуру MAP-Alert-SC с адресом SMSC и MSISDN-Alert на узел IWMSC согласно 3GPP TS 23.040.
- 5. IWMSC направляет сообщение MAP-Alert-SC на узел SMSC, чей адрес указан в п. 4.